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About the author

Nicolas P. Rougier [http://www.labri.fr/perso/nrougier/] is a full-time research scientist at Inria [http://www.inria.fr/en] which is the
French national institute for research in computer science and control. This is
a public scientific and technological establishment (EPST) under the double
supervision of the Research & Education Ministry, and the Ministry of Economy
Finance and Industry. Nicolas P. Rougier is working within the Mnemosyne [http://www.inria.fr/en/teams/mnemosyne]
project which lies at the frontier between integrative and computational
neuroscience in association with the Institute of Neurodegenerative
Diseases [http://www.imn-bordeaux.org/en/], the Bordeaux laboratory for research in computer science
(LaBRI [https://www.labri.fr/]), the University of Bordeaux [http://www.u-bordeaux.com/] and the national center for scientific
research (CNRS [http://www.cnrs.fr/index.php]).

He has been using Python for more than 15 years and NumPy for more than 10
years for modeling in neuroscience, machine learning and for advanced
visualization (OpenGL). Nicolas P. Rougier is the author of several online
resources and tutorials (Matplotlib, NumPy, OpenGL) and he’s teaching Python,
NumPy and scientific visualization at the University of Bordeaux and in various
conferences and schools worldwide (SciPy, EuroScipy, etc). He’s also the author
of the popular article Ten Simple Rules for Better Figures [http://dx.doi.org/10.1371/journal.pcbi.1003833] and a popular
matplotlib tutorial [http://www.labri.fr/perso/nrougier/teaching/matplotlib/matplotlib.html].



About this book

This book has been written in restructured text [http://docutils.sourceforge.net/rst.html] format and generated using the
rst2html.py command line available from the docutils [http://docutils.sourceforge.net/] python package.

If you want to rebuild the html output, from the top directory, type:

$ rst2html.py --link-stylesheet --cloak-email-addresses \
              --toc-top-backlinks --stylesheet=book.css \
              --stylesheet-dirs=. book.rst book.html





The sources are available from https://github.com/rougier/from-python-to-numpy.


Prerequisites

This is not a Python beginner guide and you should have an intermediate level in
Python and ideally a beginner level in NumPy. If this is not the case, have
a look at the bibliography_ for a curated list of resources.



Conventions

We will use usual naming conventions. If not stated explicitly, each script
should import NumPy, scipy and matplotlib as:

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt





We’ll use up-to-date versions (at the date of writing, i.e. January, 2017) of the
different packages:







	Packages

	Version





	Python

	3.6.0



	NumPy

	1.12.0



	Scipy

	0.18.1



	Matplotlib

	2.0.0








How to contribute

If you want to contribute to this book, you can:


	Review chapters (please contact me)


	Report issues (https://github.com/rougier/from-python-to-numpy/issues)


	Suggest improvements (https://github.com/rougier/from-python-to-numpy/pulls)


	Correct English (https://github.com/rougier/from-python-to-numpy/issues)


	Design a better and more responsive html template for the book.


	Star the project (https://github.com/rougier/from-python-to-numpy)






Publishing

If you’re an editor interested in publishing this book, you can contact me if you agree to have this version and all
subsequent versions open access (i.e. online at this address [http://www.labri.fr/perso/nrougier/from-python-to-numpy]), you know how to
deal with restructured text [http://docutils.sourceforge.net/rst.html] (Word
is not an option), you provide a real added-value as well as supporting
services, and more importantly, you have a truly amazing latex book template
(and be warned that I’m a bit picky about typography & design: Edward Tufte [https://www.edwardtufte.com/tufte/] is my hero). Still here?




License

Book

This work is licensed under a Creative Commons Attribution-Non Commercial-Share
Alike 4.0 International License [https://creativecommons.org/licenses/by-nc-sa/4.0/]. You are free to:


	Share — copy and redistribute the material in any medium or format


	Adapt — remix, transform, and build upon the material




The licensor cannot revoke these freedoms as long as you follow the license terms.

Code

The code is licensed under the OSI-approved BSD 2-Clause License.
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Simple example


Note

You can execute any code below from the code folder using the
regular python shell or from inside an IPython session or Jupyter notebook. In
such a case, you might want to use the magic command %timeit instead of the
custom one I wrote.



NumPy is all about vectorization. If you are familiar with Python, this is the
main difficulty you’ll face because you’ll need to change your way of thinking
and your new friends (among others) are named “vectors”, “arrays”, “views” or
“ufuncs”.

Let’s take a very simple example, random walk. One possible object oriented
approach would be to define a RandomWalker class and write a walk
method that would return the current position after each (random) step. It’s nice,
it’s readable, but it is slow:

Object oriented approach

import random

class RandomWalker:
    def __init__(self):
        self.position = 0

    def walk(self, n):
        self.position = 0
        for i in range(n):
            yield self.position
            self.position += 2*random.randint(0, 1) - 1

walker = RandomWalker()
walk = [position for position in walker.walk(1000)]





Benchmarking gives us:

>>> from tools import timeit
>>> walker = RandomWalker()
>>> timeit("[position for position in walker.walk(n=10000)]", globals())
10 loops, best of 3: 15.7 msec per loop





Procedural approach

For such a simple problem, we can probably save the class definition and
concentrate only on the walk method that computes successive positions after
each random step.

import random

def random_walk(n):
    position = 0
    walk = [position]
    for i in range(n):
        position += 2*random.randint(0, 1)-1
        walk.append(position)
    return walk

walk = random_walk(1000)





This new method saves some CPU cycles but not that much because this function
is pretty much the same as in the object-oriented approach and the few cycles
we saved probably come from the inner Python object-oriented machinery.

>>> from tools import timeit
>>> timeit("random_walk(n=10000)", globals())
10 loops, best of 3: 15.6 msec per loop





Vectorized approach

But we can do better using the itertools [https://docs.python.org/3.6/library/itertools.html] Python module that
offers a set of functions creating iterators for efficient looping. If we
observe that a random walk is an accumulation of steps, we can rewrite the
function by first generating all the steps and accumulate them without any
loop:

# Only available from Python 3.6
from itertools import accumulate
import random

def random_walk_faster(n=1000):
    steps = random.choices([-1,+1], k=n)
    return [0]+list(accumulate(steps))

walk = random_walk_faster(1000)





In fact, we’ve just vectorized our function. Instead of looping for picking
sequential steps and add them to the current position, we first generated all the
steps at once and used the accumulate [https://docs.python.org/3.6/library/itertools.html#itertools.accumulate]
function to compute all the positions. We got rid of the loop and this makes
things faster:

>>> from tools import timeit # Reminder: run from the `code <code>`_ folder
>>> timeit("random_walk_faster(n=10000)", globals())
10 loops, best of 3: 2.21 msec per loop





We gained 85% of computation-time compared to the previous version, not so
bad. But the advantage of this new version is that it makes NumPy vectorization
super simple. We just have to translate itertools call into NumPy ones.

def random_walk_fastest(n=1000):
    # No 's' in NumPy choice (Python offers choice & choices)
    steps = np.random.choice([-1,+1], n)
    return np.cumsum(steps)

walk = random_walk_fastest(1000)





Not too difficult, but we gained a factor 500x using NumPy:

>>> from tools import timeit
>>> timeit("random_walk_fastest(n=10000)", globals())
1000 loops, best of 3: 14 usec per loop





This book is about vectorization, be it at the code or problem level. We’ll
see this difference is important before looking at custom vectorization.



Readability vs speed

Before heading to the next chapter, I would like to warn you about a potential
problem you may encounter once you’ll have become familiar with NumPy. It is a
very powerful library and you can make wonders with it but, most of the time,
this comes at the price of readability. If you don’t comment your code at the
time of writing, you won’t be able to tell what a function is doing after a few
weeks (or possibly days). For example, can you tell what the two functions
below are doing? Probably you can tell for the first one, but unlikely for the
second (or your name is Jaime Fernández del Río [http://stackoverflow.com/questions/7100242/python-numpy-first-occurrence-of-subarray]
and you don’t need to read this book).

def function_1(seq, sub):
    return [i for i in range(len(seq) - len(sub) +1) if seq[i:i+len(sub)] == sub]

def function_2(seq, sub):
    target = np.dot(sub, sub)
    candidates = np.where(np.correlate(seq, sub, mode='valid') == target)[0]
    check = candidates[:, np.newaxis] + np.arange(len(sub))
    mask = np.all((np.take(seq, check) == sub), axis=-1)
    return candidates[mask]





As you may have guessed, the second function is the
vectorized-optimized-faster-NumPy version of the first function. It is 10 times
faster than the pure Python version, but it is hardly readable.
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Introduction

As explained in the Preface_, you should have a basic experience with NumPy to
read this book. If this is not the case, you’d better start with a beginner
tutorial before coming back here. Consequently I’ll only give here a quick
reminder on the basic anatomy of NumPy arrays, especially regarding the memory
layout, view, copy and the data type. They are critical notions to
understand if you want your computation to benefit from NumPy philosophy.

Let’s consider a simple example where we want to clear all the values from an
array which has the dtype np.float32. How does one write it to maximize speed? The
below syntax is rather obvious (at least for those familiar with NumPy) but the
above question asks to find the fastest operation.

>>> Z = np.ones(4*1000000, np.float32)
>>> Z[...] = 0





If you look more closely at both the dtype and the size of the array, you can
observe that this array can be casted (i.e. viewed) into many other
“compatible” data types. By compatible, I mean that Z.size * Z.itemsize can
be divided by the new dtype itemsize.

>>> timeit("Z.view(np.float16)[...] = 0", globals())
100 loops, best of 3: 2.72 msec per loop
>>> timeit("Z.view(np.int16)[...] = 0", globals())
100 loops, best of 3: 2.77 msec per loop
>>> timeit("Z.view(np.int32)[...] = 0", globals())
100 loops, best of 3: 1.29 msec per loop
>>> timeit("Z.view(np.float32)[...] = 0", globals())
100 loops, best of 3: 1.33 msec per loop
>>> timeit("Z.view(np.int64)[...] = 0", globals())
100 loops, best of 3: 874 usec per loop
>>> timeit("Z.view(np.float64)[...] = 0", globals())
100 loops, best of 3: 865 usec per loop
>>> timeit("Z.view(np.complex128)[...] = 0", globals())
100 loops, best of 3: 841 usec per loop
>>> timeit("Z.view(np.int8)[...] = 0", globals())
100 loops, best of 3: 630 usec per loop





Interestingly enough, the obvious way of clearing all the values is not the
fastest. By casting the array into a larger data type such as np.float64, we
gained a 25% speed factor. But, by viewing the array as a byte array
(np.int8), we gained a 50% factor. The reason for such speedup are to be
found in the internal NumPy machinery and the compiler optimization. This
simple example illustrates the philosophy of NumPy as we’ll see in the next
section below.



Memory layout

The NumPy documentation [https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html] defines the
ndarray class very clearly:


An instance of class ndarray consists of a contiguous one-dimensional segment
of computer memory (owned by the array, or by some other object), combined
with an indexing scheme that maps N integers into the location of an item in
the block.




Said differently, an array is mostly a contiguous block of memory whose parts
can be accessed using an indexing scheme. Such indexing scheme is in turn
defined by a shape [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape]
and a data type [https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html] and this is
precisely what is needed when you define a new array:

Z = np.arange(9).reshape(3,3).astype(np.int16)





Here, we know that Z itemsize is 2 bytes (int16), the shape is (3,3) and
the number of dimensions is 2 (len(Z.shape)).

>>> Z.itemsize
2
>>> Z.shape
(3, 3)
>>> Z.ndim
2





Furthermore and because Z is not a view, we can deduce the
strides [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides] of the array that define the number of bytes to step in each dimension when traversing the array.

>>> strides = Z.shape[1]*Z.itemsize, Z.itemsize
>>> strides
(6, 2)
>>> Z.strides
(6, 2)





With all these information, we know how to access a specific item (designed by
an index tuple) and more precisely, how to compute the start and end offsets:

offset_start = 0
for i in range(Z.ndim):
    offset_start += Z.strides[i] * index[i]

offset_end = offset_start + Z.itemsize
offset_end





Let’s see if this is correct using the tobytes [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tobytes.html]
conversion method:

>>> Z = np.arange(9).reshape(3, 3).astype(np.int16)
>>> index = 1, 1
>>> Z[index].tobytes()
b'\x04\x00'
>>> offset_start = 0
>>> for i in range(Z.ndim):
...     offset_start += Z.strides[i] * index[i]
...
>>> offset_end = offset_start + Z.itemsize
>>> Z.tobytes()[offset_start:offset_end]
b'\x04\x00'





This array can be actually considered from different perspectives (i.e. layouts):

Item layout

Flattened item layout

┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘

└───────────────────────────────────┘
               Z.size
                (=9)





Memory layout (C order, big endian)

                       Z.strides[1]
                           (=2)
                  ┌─────────────────────┐

          ┌       ┌──────────┬──────────┐ ┐
          │ p+00: │ 00000000 │ 00000000 │ │
          │       ├──────────┼──────────┤ │
          │ p+02: │ 00000000 │ 00000001 │ │ Z.strides[0]
          │       ├──────────┼──────────┤ │    (=2x3)
          │ p+04  │ 00000000 │ 00000010 │ │
          │       ├──────────┼──────────┤ ┘
          │ p+06  │ 00000000 │ 00000011 │
          │       ├──────────┼──────────┤
Z.nbytes  │ p+08: │ 00000000 │ 00000100 │
(=3x3x2)  │       ├──────────┼──────────┤
          │ p+10: │ 00000000 │ 00000101 │
          │       ├──────────┼──────────┤
          │ p+12: │ 00000000 │ 00000110 │
          │       ├──────────┼──────────┤
          │ p+14: │ 00000000 │ 00000111 │
          │       ├──────────┼──────────┤
          │ p+16: │ 00000000 │ 00001000 │
          └       └──────────┴──────────┘

                  └─────────────────────┘
                        Z.itemsize
                     Z.dtype.itemsize
                           (=2)





If we now take a slice of Z, the result is a view of the base array Z:

V = Z[::2,::2]





Such view is specified using a shape, a dtype and strides because strides
cannot be deduced anymore from the dtype and shape only:

Item layout

Flattened item layout

┌───┬╌╌╌┬───┬╌╌╌┬╌╌╌┬╌╌╌┬───┬╌╌╌┬───┐       ┌───┬───┬───┬───┐
│ 0 │   │ 2 │   ╎   ╎   │ 6 │   │ 8 │   →   │ 0 │ 2 │ 6 │ 8 │
└───┴╌╌╌┴───┴╌╌╌┴╌╌╌┴╌╌╌┴───┴╌╌╌┴───┘       └───┴───┴───┴───┘
└─┬─┘   └─┬─┘           └─┬─┘   └─┬─┘
  └───┬───┘               └───┬───┘
      └───────────┬───────────┘
               V.size
                (=4)





Memory layout (C order, big endian)

              ┌        ┌──────────┬──────────┐ ┐              ┐
            ┌─┤  p+00: │ 00000000 │ 00000000 │ │              │
            │ └        ├──────────┼──────────┤ │ V.strides[1] │
          ┌─┤    p+02: │          │          │ │    (=4)      │
          │ │ ┌        ├──────────┼──────────┤ ┘              │
          │ └─┤  p+04  │ 00000000 │ 00000010 │                │
          │   └        ├──────────┼──────────┤                │ V.strides[0]
          │      p+06: │          │          │                │    (=12)
          │            ├──────────┼──────────┤                │
V.nbytes ─┤      p+08: │          │          │                │
  (=8)    │            ├──────────┼──────────┤                │
          │      p+10: │          │          │                │
          │   ┌        ├──────────┼──────────┤                ┘
          │ ┌─┤  p+12: │ 00000000 │ 00000110 │
          │ │ └        ├──────────┼──────────┤
          └─┤    p+14: │          │          │
            │ ┌        ├──────────┼──────────┤
            └─┤  p+16: │ 00000000 │ 00001000 │
              └        └──────────┴──────────┘

                       └─────────────────────┘
                             V.itemsize
                          V.dtype.itemsize
                                (=2)







Views and copies

Views and copies are important concepts for the optimization of your numerical
computations. Even if we’ve already manipulated them in the previous section,
the whole story is a bit more complex.


Direct and indirect access

First, we have to distinguish between indexing [https://docs.scipy.org/doc/numpy/user/basics.indexing.html#] and fancy
indexing [https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing]. The first will always return a view while the second will return a
copy. This difference is important because in the first case, modifying the view
modifies the base array while this is not true in the second case:

>>> Z = np.zeros(9)
>>> Z_view = Z[:3]
>>> Z_view[...] = 1
>>> Z
array([1., 1., 1., 0., 0., 0., 0., 0., 0.])
>>> Z = np.zeros(9)
>>> Z_copy = Z[[0, 1, 2]]
>>> Z_copy[...] = 1
>>> Z
array([0., 0., 0., 0., 0., 0., 0., 0., 0.])





Thus, if you need fancy indexing, it’s better to keep a copy of your fancy index
(especially if it was complex to compute it) and to work with it:

>>> Z = np.zeros(9)
>>> index = [0, 1, 2]
>>> Z[index] = 1
>>> Z
array([1., 1., 1., 0., 0., 0., 0., 0., 0.])





If you are unsure if the result of your indexing is a view or a copy, you can
check what is the base of your result. If it is None, then you result is a
copy:

>>> Z = np.random.uniform(0, 1, (5, 5))
>>> Z1 = Z[:3, :]
>>> Z2 = Z[[0, 1, 2], :]
>>> np.allclose(Z1, Z2)
True
>>> Z1.base is Z
True
>>> Z2.base is Z
False
>>> Z2.base is None
True





Note that some NumPy functions return a view when possible (e.g. ravel [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html])
while some others always return a copy (e.g. flatten [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten]):

>>> Z = np.zeros((5, 5))
>>> Z.ravel().base is Z
True
>>> Z[::2, ::2].ravel().base is Z
False
>>> Z.flatten().base is Z
False







Temporary copy

Copies can be made explicitly like in the previous section, but the most
general case is the implicit creation of intermediate copies. This is the case
when you are doing some arithmetic with arrays:

>>> X = np.ones(10, dtype=int)
>>> Y = np.ones(10, dtype=int)
>>> A = 2*X + 2*Y





In the example above, three intermediate arrays have been created. One for
holding the result of 2*X, one for holding the result of 2*Y and the last
one for holding the result of 2*X+2*Y. In this specific case, the arrays are
small enough and this does not really make a difference. However, if your
arrays are big, then you have to be careful with such expressions and wonder if
you can do it differently. For example, if only the final result matters and
you don’t need X nor Y afterwards, an alternate solution would be:

>>> X = np.ones(10, dtype=int)
>>> Y = np.ones(10, dtype=int)
>>> np.multiply(X, 2, out=X)
>>> np.multiply(Y, 2, out=Y)
>>> np.add(X, Y, out=X)





Using this alternate solution, no temporary array has been created. The problem
is that there are many other cases where such copies need to be created and
this impacts the performance like demonstrated in the example below:

>>> X = np.ones(100000000, dtype=int)
>>> Y = np.ones(100000000, dtype=int)
>>> timeit("global X; X = X + 2.0*Y", globals())
100 loops, best of 3: 3.61 ms per loop
>>> timeit("global X; X = X + 2*Y", globals())
100 loops, best of 3: 3.47 ms per loop
>>> timeit("global X; X += 2*Y", globals())
100 loops, best of 3: 2.79 ms per loop
>>> timeit("np.add(X, Y, out=X); np.add(X, Y, out=X)", globals())
1000 loops, best of 3: 1.57 ms per loop








Conclusion

As a conclusion, we’ll make an exercise. Given two vectors Z1 and Z2. We
would like to know if Z2 is a view of Z1 and if yes, what is this view ?

>>> Z1 = np.arange(10)
>>> Z2 = Z1[1:-1:2]





   ╌╌╌┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬╌╌
Z1    │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │
   ╌╌╌┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴╌╌
   ╌╌╌╌╌╌╌┬───┬╌╌╌┬───┬╌╌╌┬───┬╌╌╌┬───┬╌╌╌╌╌╌╌╌╌╌
Z2        │ 1 │   │ 3 │   │ 5 │   │ 7 │
   ╌╌╌╌╌╌╌┴───┴╌╌╌┴───┴╌╌╌┴───┴╌╌╌┴───┴╌╌╌╌╌╌╌╌╌╌





First, we need to check if Z1 is the base of Z2

>>> Z2.base is Z1
True





At this point, we know Z2 is a view of Z1, meaning Z2 can be expressed as
Z1[start:stop:step]. The difficulty is to find start, stop and
step.  For the step, we can use the strides property of any array that
gives the number of bytes to go from one element to the other in each
dimension. In our case, and because both arrays are one-dimensional, we can
directly compare the first stride only:

>>> step = Z2.strides[0] // Z1.strides[0]
>>> step
2





Next difficulty is to find the start and the stop indices. To do this, we
can take advantage of the byte_bounds method that returns a pointer to the
end-points of an array.

  byte_bounds(Z1)[0]                  byte_bounds(Z1)[-1]
      ↓                                       ↓
   ╌╌╌┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬╌╌
Z1    │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │
   ╌╌╌┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴╌╌

      byte_bounds(Z2)[0]      byte_bounds(Z2)[-1]
          ↓                           ↓
   ╌╌╌╌╌╌╌┬───┬╌╌╌┬───┬╌╌╌┬───┬╌╌╌┬───┬╌╌╌╌╌╌╌╌╌╌
Z2        │ 1 │   │ 3 │   │ 5 │   │ 7 │
   ╌╌╌╌╌╌╌┴───┴╌╌╌┴───┴╌╌╌┴───┴╌╌╌┴───┴╌╌╌╌╌╌╌╌╌╌





>>> offset_start = np.byte_bounds(Z2)[0] - np.byte_bounds(Z1)[0]
>>> offset_start # bytes
8

>>> offset_stop = np.byte_bounds(Z2)[-1] - np.byte_bounds(Z1)[-1]
>>> offset_stop # bytes
-16





Converting these offsets into indices is straightforward using the itemsize
and taking into account that the offset_stop is negative (end-bound of Z2
is logically smaller than end-bound of Z1 array). We thus need to add the
items size of Z1 to get the right end index.

>>> start = offset_start // Z1.itemsize
>>> stop = Z1.size + offset_stop // Z1.itemsize
>>> start, stop, step
(1, 8, 2)





Last we test our results:

>>> np.allclose(Z1[start:stop:step], Z2)
True





As an exercise, you can improve this first and very simple implementation by
taking into account:


	Negative steps


	Multi-dimensional arrays




Solution to the exercise.





            

          

      

      

    

  

    
      
          
            
  
Code vectorization


Contents


	Introduction


	Uniform vectorization


	The Game of Life


	Python implementation


	NumPy implementation


	Exercise


	Sources


	References






	Temporal vectorization


	Python implementation


	NumPy implementation


	Faster NumPy implementation


	Visualization


	Exercise


	Sources


	References






	Spatial vectorization


	Boids


	Python implementation


	NumPy implementation


	Exercise


	Sources


	References






	Conclusion







Introduction

Code vectorization means that the problem you’re trying to solve is inherently
vectorizable and only requires a few NumPy tricks to make it faster. Of course
it does not mean it is easy or straightforward, but at least it does not
necessitate totally rethinking your problem (as it will be the case in the
`Problem vectorization`_ chapter). Still, it may require some experience to see
where code can be vectorized. Let’s illustrate this through a simple example
where we want to sum up two lists of integers. One simple way using pure Python
is:

def add_python(Z1,Z2):
    return [z1+z2 for (z1,z2) in zip(Z1,Z2)]





This first naive solution can be vectorized very easily using NumPy:

def add_numpy(Z1,Z2):
    return np.add(Z1,Z2)





Without any surprise, benchmarking the two approaches shows the second method
is the fastest with one order of magnitude.

>>> Z1 = random.sample(range(1000), 100)
>>> Z2 = random.sample(range(1000), 100)
>>> timeit("add_python(Z1, Z2)", globals())
1000 loops, best of 3: 68 usec per loop
>>> timeit("add_numpy(Z1, Z2)", globals())
10000 loops, best of 3: 1.14 usec per loop





Not only is the second approach faster, but it also naturally adapts to the
shape of Z1 and Z2. This is the reason why we did not write Z1 + Z2
because it would not work if Z1 and Z2 were both lists. In the first Python
method, the inner + is interpreted differently depending on the nature of the
two objects such that if we consider two nested lists, we get the following
outputs:

>>> Z1 = [[1, 2], [3, 4]]
>>> Z2 = [[5, 6], [7, 8]]
>>> Z1 + Z2
[[1, 2], [3, 4], [5, 6], [7, 8]]
>>> add_python(Z1, Z2)
[[1, 2, 5, 6], [3, 4, 7, 8]]
>>> add_numpy(Z1, Z2)
[[ 6  8]
 [10 12]]





The first method concatenates the two lists together, the second method
concatenates the internal lists together and the last one computes what is
(numerically) expected. As an exercise, you can rewrite the Python version
such that it accepts nested lists of any depth.



Uniform vectorization

Uniform vectorization is the simplest form of vectorization where all the
elements share the same computation at every time step with no specific
processing for any element. One stereotypical case is the Game of Life that has
been invented by John Conway (see below) and is one of the earliest examples of
cellular automata. Those cellular automata can be conveniently regarded as
an array of cells that are connected together with the notion of neighbours and
their vectorization is straightforward. Let me first define the game and we’ll
see how to vectorize it.


Figure 4.1

Conus textile snail exhibits a cellular automaton pattern on its shell.
Image by Richard Ling [https://commons.wikimedia.org/wiki/File:Textile_cone.JPG], 2005.



[image: data/Textile-Cone-cropped.jpg]

The Game of Life


Note

Excerpt from the Wikipedia entry on the
Game of Life [https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life]



The Game of Life is a cellular automaton devised by the British mathematician
John Horton Conway in 1970. It is the best-known example of a cellular
automaton. The “game” is actually a zero-player game, meaning that its
evolution is determined by its initial state, needing no input from human
players. One interacts with the Game of Life by creating an initial
configuration and observing how it evolves.

The universe of the Game of Life is an infinite two-dimensional orthogonal grid
of square cells, each of which is in one of two possible states, live or
dead. Every cell interacts with its eight neighbours, which are the cells that
are directly horizontally, vertically, or diagonally adjacent. At each step in
time, the following transitions occur:


	Any live cell with fewer than two live neighbours dies, as if by
underpopulation.


	Any live cell with more than three live neighbours dies, as if by
overcrowding.


	Any live cell with two or three live neighbours lives, unchanged, to the
next generation.


	Any dead cell with exactly three live neighbours becomes a live cell.




The initial pattern constitutes the ‘seed’ of the system. The first generation
is created by applying the above rules simultaneously to every cell in the seed
– births and deaths happen simultaneously, and the discrete moment at which
this happens is sometimes called a tick. (In other words, each generation is a
pure function of the one before.) The rules continue to be applied repeatedly
to create further generations.



Python implementation


Note

We could have used the more efficient python array interface [http://docs.python.org/3/library/array.html] but it is more convenient to
use the familiar list object.



In pure Python, we can code the Game of Life using a list of lists representing
the board where cells are supposed to evolve. Such a board will be equipped with
border of 0 that allows to accelerate things a bit by avoiding having specific
tests for borders when counting the number of neighbours.

Z = [[0,0,0,0,0,0],
     [0,0,0,1,0,0],
     [0,1,0,1,0,0],
     [0,0,1,1,0,0],
     [0,0,0,0,0,0],
     [0,0,0,0,0,0]]





Taking the border into account, counting neighbours then is straightforward:

def compute_neighbours(Z):
    shape = len(Z), len(Z[0])
    N  = [[0,]*(shape[1]) for i in range(shape[0])]
    for x in range(1,shape[0]-1):
        for y in range(1,shape[1]-1):
            N[x][y] = Z[x-1][y-1]+Z[x][y-1]+Z[x+1][y-1] \
                    + Z[x-1][y]            +Z[x+1][y]   \
                    + Z[x-1][y+1]+Z[x][y+1]+Z[x+1][y+1]
    return N





To iterate one step in time, we then simply count the number of neighbours for
each internal cell and we update the whole board according to the four
aforementioned rules:

def iterate(Z):
    N = compute_neighbours(Z)
    for x in range(1,shape[0]-1):
        for y in range(1,shape[1]-1):
             if Z[x][y] == 1 and (N[x][y] < 2 or N[x][y] > 3):
                 Z[x][y] = 0
             elif Z[x][y] == 0 and N[x][y] == 3:
                 Z[x][y] = 1
    return Z





The figure below shows four iterations on a 4x4 area where the initial state is a
glider [https://en.wikipedia.org/wiki/Glider_(Conway%27s_Life)], a structure
discovered by Richard K. Guy in 1970.


Figure 4.2

The glider pattern is known to replicate itself one step diagonally in 4
iterations.



[image: data/glider.png]


NumPy implementation

Starting from the Python version, the vectorization of the Game of Life
requires two parts, one responsible for counting the neighbours and one
responsible for enforcing the rules. Neighbour-counting is relatively easy if
we remember we took care of adding a null border around the arena. By
considering partial views of the arena we can actually access neighbours quite
intuitively as illustrated below for the one-dimensional case:

               ┏━━━┳━━━┳━━━┓───┬───┐
        Z[:-2] ┃ 0 ┃ 1 ┃ 1 ┃ 1 │ 0 │ (left neighbours)
               ┗━━━┻━━━┻━━━┛───┴───┘
                     ↓︎
           ┌───┏━━━┳━━━┳━━━┓───┐
   Z[1:-1] │ 0 ┃ 1 ┃ 1 ┃ 1 ┃ 0 │ (actual cells)
           └───┗━━━┻━━━┻━━━┛───┘
                     ↑
       ┌───┬───┏━━━┳━━━┳━━━┓
Z[+2:] │ 0 │ 1 ┃ 1 ┃ 1 ┃ 0 ┃ (right neighbours)
       └───┴───┗━━━┻━━━┻━━━┛





Going to the two dimensional case requires just a bit of arithmetic to make
sure to consider all the eight neighbours.

N = np.zeros(Z.shape, dtype=int)
N[1:-1,1:-1] += (Z[ :-2, :-2] + Z[ :-2,1:-1] + Z[ :-2,2:] +
                 Z[1:-1, :-2]                + Z[1:-1,2:] +
                 Z[2:  , :-2] + Z[2:  ,1:-1] + Z[2:  ,2:])





For the rule enforcement, we can write a first version using NumPy’s
argwhere [http://docs.scipy.org/doc/numpy/reference/generated/numpy.argwhere.html]
method that will give us the indices where a given condition is True.

# Flatten arrays
N_ = N.ravel()
Z_ = Z.ravel()

# Apply rules
R1 = np.argwhere( (Z_==1) & (N_ < 2) )
R2 = np.argwhere( (Z_==1) & (N_ > 3) )
R3 = np.argwhere( (Z_==1) & ((N_==2) | (N_==3)) )
R4 = np.argwhere( (Z_==0) & (N_==3) )

# Set new values
Z_[R1] = 0
Z_[R2] = 0
Z_[R3] = Z_[R3]
Z_[R4] = 1

# Make sure borders stay null
Z[0,:] = Z[-1,:] = Z[:,0] = Z[:,-1] = 0





Even if this first version does not use nested loops, it is far from optimal
because of the use of the four argwhere calls that may be quite slow. We can
instead factorize the rules into cells that will survive (stay at 1) and cells
that will give birth. For doing this, we can take advantage of NumPy boolean
capability and write quite naturally:


Note

We did not write Z = 0 as this would simply assign the value 0 to Z that
would then become a simple scalar.



birth = (N==3)[1:-1,1:-1] & (Z[1:-1,1:-1]==0)
survive = ((N==2) | (N==3))[1:-1,1:-1] & (Z[1:-1,1:-1]==1)
Z[...] = 0
Z[1:-1,1:-1][birth | survive] = 1





If you look at the birth and survive lines, you’ll see that these two
variables are arrays that can be used to set Z values to 1 after having
cleared it.


Figure 4.3

The Game of Life. Gray levels indicate how much a cell has been active in
the past.
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Introduction

Problem vectorization is much harder than code vectorization because it means
that you fundamentally have to rethink your problem in order to make it
vectorizable. Most of the time this means you have to use a different algorithm
to solve your problem or even worse… to invent a new one. The difficulty is thus
to think out-of-the-box.

To illustrate this, let’s consider a simple problem where given two vectors X and
Y, we want to compute the sum of X[i]*Y[j] for all pairs of indices i,
j. One simple and obvious solution is to write:

def compute_python(X, Y):
    result = 0
    for i in range(len(X)):
        for j in range(len(Y)):
            result += X[i] * Y[j]
    return result





However, this first and naïve implementation requires two loops and we already
know it will be slow:

>>> X = np.arange(1000)
>>> timeit("compute_python(X,X)")
1 loops, best of 3: 0.274481 sec per loop





How to vectorize the problem then? If you remember your linear algebra course,
you may have identified the expression X[i] * Y[j] to be very similar to a
matrix product expression. So maybe we could benefit from some NumPy
speedup. One wrong solution would be to write:

def compute_numpy_wrong(X, Y):
    return (X*Y).sum()





This is wrong because the X*Y expression will actually compute a new vector
Z such that Z[i] = X[i] * Y[i] and this is not what we want. Instead, we
can exploit NumPy broadcasting by first reshaping the two vectors and then
multiply them:

def compute_numpy(X, Y):
    Z = X.reshape(len(X),1) * Y.reshape(1,len(Y))
    return Z.sum()





Here we have Z[i,j] == X[i,0]*Y[0,j] and if we take the sum over each elements of
Z, we get the expected result. Let’s see how much speedup we gain in the
process:

>>> X = np.arange(1000)
>>> timeit("compute_numpy(X,X)")
10 loops, best of 3: 0.00157926 sec per loop





This is better, we gained a factor of ~150. But we can do much better.

If you look again and more closely at the pure Python version, you can see that
the inner loop is using X[i] that does not depend on the j index, meaning
it can be removed from the inner loop. Code can be rewritten as:

def compute_numpy_better_1(X, Y):
    result = 0
    for i in range(len(X)):
        Ysum = 0
        for j in range(len(Y)):
            Ysum += Y[j]
        result += X[i]*Ysum
    return result





But since the inner loop does not depend on the i index, we might as well
compute it only once:

def compute_numpy_better_2(X, Y):
    result = 0
    Ysum = 0
    for j in range(len(Y)):
        Ysum += Y[j]
    for i in range(len(X)):
        result += X[i]*Ysum
    return result





Not so bad, we have removed the inner loop, transforming \(O(n^2)\)
complexity into \(O(n)\) complexity. Using the same approach, we can now
write:

def compute_numpy_better_3(x, y):
    Ysum = 0
    for j in range(len(Y)):
        Ysum += Y[j]
    Xsum = 0
    for i in range(len(X)):
        Xsum += X[i]
    return Xsum*Ysum





Finally, having realized we only need the product of the sum over X and Y
respectively, we can benefit from the np.sum function and write:

def compute_numpy_better(x, y):
    return np.sum(y) * np.sum(x)





It is shorter, clearer and much, much faster:

>>> X = np.arange(1000)
>>> timeit("compute_numpy_better(X,X)")
1000 loops, best of 3: 3.97208e-06 sec per loop





We have indeed reformulated our problem, taking advantage of the fact that
\(\sum_{ij}{X_i}{Y_j} = \sum_{i}X_i \sum_{j}Y_j$\) and we’ve learned in the
meantime that there are two kinds of vectorization: code vectorization and
problem vectorization. The latter is the most difficult but the most
important because this is where you can expect huge gains in speed. In this
simple example, we gain a factor of 150 with code vectorization but we gained a
factor of 70,000 with problem vectorization, just by writing our problem
differently (even though you cannot expect such a huge speedup in all
situations). However, code vectorization remains an important factor, and if we
rewrite the last solution the Python way, the improvement is good but not as much as
in the NumPy version:

def compute_python_better(x, y):
    return sum(x)*sum(y)





This new Python version is much faster than the previous Python version, but
still, it is 50 times slower than the NumPy version:

>>> X = np.arange(1000)
>>> timeit("compute_python_better(X,X)")
1000 loops, best of 3: 0.000155677 sec per loop







Path finding

Path finding is all about finding the shortest path in a graph. This can be
split in two distinct problems: to find a path between two nodes in a graph and
to find the shortest path. We’ll illustrate this through path finding in a
maze. The first task is thus to build a maze.


Figure 5.1

A hedge maze at Longleat stately home in England.
Image by Prince Rurik [https://commons.wikimedia.org/wiki/File:Longleat_maze.jpg], 2005.



[image: data/Longleat-maze-cropped.jpg]

Building a maze

There exist many maze generation algorithms [https://en.wikipedia.org/wiki/Maze_generation_algorithm] but I tend to
prefer the one I’ve been using for several years but whose origin is unknown to
me. I’ve added the code in the cited wikipedia entry. Feel free to complete it
if you know the original author. This algorithm works by creating n (density)
islands of length p (complexity). An island is created by choosing a random
starting point with odd coordinates, then a random direction is chosen. If the
cell two steps in a given direction is free, then a wall is added at both one step
and two steps in this direction. The process is iterated for n steps for this
island. p islands are created. n and p are expressed as float to adapt them to
the size of the maze. With a low complexity, islands are very small and the
maze is easy to solve. With low density, the maze has more “big empty rooms”.

def build_maze(shape=(65, 65), complexity=0.75, density=0.50):
    # Only odd shapes
    shape = ((shape[0]//2)*2+1, (shape[1]//2)*2+1)

    # Adjust complexity and density relatively to maze size
    n_complexity = int(complexity*(shape[0]+shape[1]))
    n_density = int(density*(shape[0]*shape[1]))

    # Build actual maze
    Z = np.zeros(shape, dtype=bool)

    # Fill borders
    Z[0, :] = Z[-1, :] = Z[:, 0] = Z[:, -1] = 1

    # Islands starting point with a bias in favor of border
    P = np.random.normal(0, 0.5, (n_density, 2))
    P = 0.5 - np.maximum(-0.5, np.minimum(P, +0.5))
    P = (P*[shape[1], shape[0]]).astype(int)
    P = 2*(P//2)

    # Create islands
    for i in range(n_density):
        # Test for early stop: if all starting point are busy, this means we
        # won't be able to connect any island, so we stop.
        T = Z[2:-2:2, 2:-2:2]
        if T.sum() == T.size: break
        x, y = P[i]
        Z[y, x] = 1
        for j in range(n_complexity):
            neighbours = []
            if x > 1:          neighbours.append([(y, x-1), (y, x-2)])
            if x < shape[1]-2: neighbours.append([(y, x+1), (y, x+2)])
            if y > 1:          neighbours.append([(y-1, x), (y-2, x)])
            if y < shape[0]-2: neighbours.append([(y+1, x), (y+2, x)])
            if len(neighbours):
                choice = np.random.randint(len(neighbours))
                next_1, next_2 = neighbours[choice]
                if Z[next_2] == 0:
                    Z[next_1] = 1
                    Z[next_2] = 1
                    y, x = next_2
            else:
                break
    return Z





Here is an animation showing the generation process.


Figure 5.2

Progressive maze building with complexity and density control.
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Introduction

One of the strengths of NumPy is that it can be used to build new objects or to
subclass the ndarray [https://docs.scipy.org/doc/numpy/user/basics.subclassing.html] object. This
later process is a bit tedious but it is worth the effort because it allows you
to improve the ndarray object to suit your problem. We’ll examine in
the following section two real-world cases (typed list and memory-aware array)
that are extensively used in the glumpy [http://glumpy.github.io] project
(that I maintain) while the last one (double precision array) is a more
academic case.



Typed list

Typed list (also known as ragged array) is a list of items that all have the
same data type (in the sense of NumPy). They offer both the list and the
ndarray API (with some restriction of course) but because their respective APIs may not be
compatible in some cases, we have to make choices. For example, concerning
the + operator, we’ll choose to use the NumPy API where the value is added to
each individual item instead of expanding the list by appending a new item
(1).

>>> l = TypedList([[1,2], [3]])
>>> print(l)
[1, 2], [3]
>>> print(l+1)
[2, 3], [4]





From the list API, we want our new object to offer the possibility of inserting,
appending and removing items seamlessly.


Creation

Since the object is dynamic by definition, it is important to offer a
general-purpose creation method powerful enough to avoid having to do later
manipulations. Such manipulations, for example insertion/deletion, cost
a lot of operations and we want to avoid them. Here is a proposal (among
others) for the creation of a TypedList object.

def __init__(self, data=None, sizes=None, dtype=float)
    """
    Parameters
    ----------

    data : array_like
        An array, any object exposing the array interface, an object
        whose __array__ method returns an array, or any (nested) sequence.

    sizes:  int or 1-D array
        If `itemsize` is an integer, N, the array will be divided
        into elements of size N. If such partition is not possible,
        an error is raised.

        If `itemsize` is a 1-D array, the array will be divided into
        elements whose successive sizes will be picked from itemsize.
        If the sum of itemsize values is different from array size,
        an error is raised.

    dtype: np.dtype
        Any object that can be interpreted as a NumPy data type.
    """





This API allows creating an empty list or creating a list from some external
data. Note that in the latter case, we need to specify how to partition the
data into several items or they will split into 1-size items. It can be a regular
partition (i.e. each item is 2 data long) or a custom one (i.e. data must be
split in items of size 1, 2, 3 and 4 items).

>>> L = TypedList([[0], [1,2], [3,4,5], [6,7,8,9]])
>>> print(L)
[ [0] [1 2] [3 4 5] [6 7 8] ]

>>> L = TypedList(np.arange(10), [1,2,3,4])
[ [0] [1 2] [3 4 5] [6 7 8] ]





At this point, the question is whether to subclass the ndarray class or to use
an internal ndarray to store our data. In our specific case, it does not really make
sense to subclass ndarray because we don’t really want to offer the
ndarray interface. Instead, we’ll use an ndarray for storing the list data and
this design choice will offer us more flexibility.

╌╌╌╌┬───┐┌───┬───┐┌───┬───┬───┐┌───┬───┬───┬───┬╌╌╌╌╌
    │ 0 ││ 1 │ 2 ││ 3 │ 4 │ 5 ││ 6 │ 7 │ 8 │ 9 │
 ╌╌╌┴───┘└───┴───┘└───┴───┴───┘└───┴───┴───┴───┴╌╌╌╌╌╌
   item 1  item 2    item 3         item 4





To store the limit of each item, we’ll use an items array that will take care
of storing the position (start and end) for each item. For the creation of a
list, there are two distinct cases: no data is given or some data is given. The
first case is easy and requires only the creation of the _data and _items
arrays. Note that their size is not null since it would be too costly to resize
the array each time we insert a new item. Instead, it’s better to reserve some
space.

First case. No data has been given, only dtype.

self._data = np.zeros(512, dtype=dtype)
self._items = np.zeros((64,2), dtype=int)
self._size = 0
self._count = 0





Second case. Some data has been given as well as a list of item sizes (for
other cases, see full code below)

self._data = np.array(data, copy=False)
self._size = data.size
self._count = len(sizes)
indices = sizes.cumsum()
self._items = np.zeros((len(sizes),2),int)
self._items[1:,0] += indices[:-1]
self._items[0:,1] += indices







Access

Once this is done, every list method requires only a bit of computation and
playing with the different key when getting, inserting or setting an item. Here is
the code for the __getitem__ method. No real difficulty but the possible
negative step:

def __getitem__(self, key):
    if type(key) is int:
        if key < 0:
            key += len(self)
        if key < 0 or key >= len(self):
            raise IndexError("Tuple index out of range")
        dstart = self._items[key][0]
        dstop  = self._items[key][1]
        return self._data[dstart:dstop]

    elif type(key) is slice:
        istart, istop, step = key.indices(len(self))
        if istart > istop:
            istart,istop = istop,istart
        dstart = self._items[istart][0]
        if istart == istop:
            dstop = dstart
        else:
            dstop  = self._items[istop-1][1]
        return self._data[dstart:dstop]

    elif isinstance(key,str):
        return self._data[key][:self._size]

    elif key is Ellipsis:
        return self.data

    else:
        raise TypeError("List indices must be integers")







Exercise

Modification of the list is a bit more complicated, because it requires
managing memory properly. Since it poses no real difficulty, we left this as an
exercise for the reader. For the lazy, you can have a look at the code below.
Be careful with negative steps, key range and array expansion. When the
underlying array needs to be expanded, it’s better to expand it more than
necessary in order to avoid future expansion.

setitem

L = TypedList([[0,0], [1,1], [0,0]])
L[1] = 1,1,1





╌╌╌╌┬───┬───┐┌───┬───┐┌───┬───┬╌╌╌╌╌
    │ 0 │ 0 ││ 1 │ 1 ││ 2 │ 2 │
 ╌╌╌┴───┴───┘└───┴───┘└───┴───┴╌╌╌╌╌╌
     item 1   item 2   item 3

╌╌╌╌┬───┬───┐┌───┬───┲━━━┓┌───┬───┬╌╌╌╌╌
    │ 0 │ 0 ││ 1 │ 1 ┃ 1 ┃│ 2 │ 2 │
 ╌╌╌┴───┴───┘└───┴───┺━━━┛└───┴───┴╌╌╌╌╌╌
     item 1     item 2     item 3





delitem

L = TypedList([[0,0], [1,1], [0,0]])
del L[1]





╌╌╌╌┬───┬───┐┏━━━┳━━━┓┌───┬───┬╌╌╌╌╌
    │ 0 │ 0 │┃ 1 ┃ 1 ┃│ 2 │ 2 │
 ╌╌╌┴───┴───┘┗━━━┻━━━┛└───┴───┴╌╌╌╌╌╌
     item 1   item 2   item 3

╌╌╌╌┬───┬───┐┌───┬───┬╌╌╌╌╌
    │ 0 │ 0 ││ 2 │ 2 │
 ╌╌╌┴───┴───┘└───┴───┴╌╌╌╌╌╌
     item 1    item 2





insert

L = TypedList([[0,0], [1,1], [0,0]])
L.insert(1, [3,3])





╌╌╌╌┬───┬───┐┌───┬───┐┌───┬───┬╌╌╌╌╌
    │ 0 │ 0 ││ 1 │ 1 ││ 2 │ 2 │
 ╌╌╌┴───┴───┘└───┴───┘└───┴───┴╌╌╌╌╌╌
     item 1   item 2   item 3

╌╌╌╌┬───┬───┐┏━━━┳━━━┓┌───┬───┐┌───┬───┬╌╌╌╌╌
    │ 0 │ 0 │┃ 3 ┃ 3 ┃│ 1 │ 1 ││ 2 │ 2 │
 ╌╌╌┴───┴───┘┗━━━┻━━━┛└───┴───┘└───┴───┴╌╌╌╌╌╌
     item 1   item 2   item 3   item 4







Sources


	array_list.py (solution to the exercise)







Memory aware array


Glumpy

Glumpy [http://glumpy.github.io] is an OpenGL-based interactive
visualization library in Python whose goal is to make it easy to create fast,
scalable, beautiful, interactive and dynamic visualizations.


Figure 6.1

Simulation of a spiral galaxy using the density wave theory.



[image: data/galaxy.png]







Figure 6.2

Tiger display using collections and 2 GL calls



[image: data/tiger.png]
Glumpy is based on a tight and seamless integration with NumPy arrays. This
means you can manipulate GPU data as you would with regular NumPy arrays and
glumpy will take care of the rest. But an example is worth a thousand words:

from glumpy import gloo

dtype = [("position", np.float32, 2),  # x,y
         ("color",    np.float32, 3)]  # r,g,b
V = np.zeros((3,3),dtype).view(gloo.VertexBuffer)
V["position"][0,0] = 0.0, 0.0
V["position"][1,1] = 0.0, 0.0





V is a VertexBuffer which is both a GPUData and a NumPy array. When V is
modified, glumpy takes care of computing the smallest contiguous block of dirty
memory since it was last uploaded to GPU memory. When this buffer is to be used
on the GPU, glumpy takes care of uploading the “dirty” area at the very last
moment. This means that if you never use V, nothing will be ever uploaded to
the GPU! In the case above, the last computed “dirty” area is made of 88 bytes
starting at offset 0 as illustrated below:

[image: data/GPUData.png]

Note

When a buffer is created, it is marked as totally dirty, but for the sake of
illustration, just pretend this is not the case here.



Glumpy will thus end up uploading 88 bytes while only 16 bytes have been
actually modified. You might wonder if this optimal. Actually, most of the time
it is, because uploading some data to a buffer requires a lot of operations on
the GL side and each call has a fixed cost.



Array subclass

As explained in the Subclassing ndarray [https://docs.scipy.org/doc/numpy/user/basics.subclassing.html]
documentation, subclassing ndarray is complicated by the fact that new
instances of ndarray classes can come about in three different ways:


	Explicit constructor call


	View casting


	New from template




However our case is simpler because we’re only interested in the view
casting. We thus only need to define the __new__ method that will be called
at each instance creation. As such, the GPUData class will be equipped with two
properties:


	extents: This represents the full extent of the view relatively to the base
array. It is stored as a byte offset and a byte size.


	pending_data: This represents the contiguous dirty area as (byte offset,
byte size) relatively to the extents property.




class GPUData(np.ndarray):
    def __new__(cls, *args, **kwargs):
        return np.ndarray.__new__(cls, *args, **kwargs)

    def __init__(self, *args, **kwargs):
        pass

    def __array_finalize__(self, obj):
        if not isinstance(obj, GPUData):
            self._extents = 0, self.size*self.itemsize
            self.__class__.__init__(self)
            self._pending_data = self._extents
        else:
            self._extents = obj._extents







Computing extents

Each time a partial view of the array is requested, we need to compute the
extents of this partial view while we have access to the base array.

def __getitem__(self, key):
    Z = np.ndarray.__getitem__(self, key)
    if not hasattr(Z,'shape') or Z.shape == ():
        return Z
    Z._extents = self._compute_extents(Z)
    return Z

def _compute_extents(self, Z):
    if self.base is not None:
        base = self.base.__array_interface__['data'][0]
        view = Z.__array_interface__['data'][0]
        offset = view - base
        shape = np.array(Z.shape) - 1
        strides = np.array(Z.strides)
        size = (shape*strides).sum() + Z.itemsize
        return offset, offset+size
    else:
        return 0, self.size*self.itemsize







Keeping track of pending data

One extra difficulty is that we don’t want all the views to keep track of the
dirty area but only the base array. This is the reason why we don’t instantiate
the self._pending_data in the second case of the __array_finalize__
method. This will be handled when we need to update some data as during a
__setitem__ call for example:

def __setitem__(self, key, value):
    Z = np.ndarray.__getitem__(self, key)
    if Z.shape == ():
        key = np.mod(np.array(key)+self.shape, self.shape)
        offset = self._extents[0]+(key * self.strides).sum()
        size = Z.itemsize
        self._add_pending_data(offset, offset+size)
        key = tuple(key)
    else:
        Z._extents = self._compute_extents(Z)
        self._add_pending_data(Z._extents[0], Z._extents[1])
    np.ndarray.__setitem__(self, key, value)

def _add_pending_data(self, start, stop):
    base = self.base
    if isinstance(base, GPUData):
        base._add_pending_data(start, stop)
    else:
        if self._pending_data is None:
            self._pending_data = start, stop
        else:
            start = min(self._pending_data[0], start)
            stop = max(self._pending_data[1], stop)
            self._pending_data = start, stop







Sources


	gpudata.py







Conclusion

As explained on the NumPy website, NumPy is the fundamental package for
scientific computing with Python. However, as illustrated in this chapter, the
usage of NumPy strengths goes far beyond a mere multi-dimensional container of
generic data. Using ndarray as a private property in one case (TypedList) or
directly subclassing the ndarray class (GPUData) to keep track of memory in
another case, we’ve seen how it is possible to extend NumPy’s capabilities to
suit very specific needs. The limit is only your imagination and your experience.
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Back to Python

You’ve almost reached the end of the book and, hopefully, you’ve learned that
NumPy is a very versatile and powerful library. However in the meantime,
remember that Python is also quite a powerful language. In fact, in some
specific cases, it might be more powerful than NumPy. Let’s consider, for
example, an interesting exercise that has been proposed by Tucker Balch in his
Coursera’s Computational Investing [https://www.coursera.org/learn/computational-investing] course. The exercise
is written as:


Write the most succinct code possible to compute all “legal” allocations to 4
stocks such that the allocations are in 1.0 chunks, and the allocations sum
to 10.0.




Yaser Martinez [http://yasermartinez.com/blog/index.html] collected the
different answers from the community and the proposed solutions yield
surprising results. But let’s start with the most obvious Python solution:

def solution_1():
    # Brute force
    # 14641 (=11*11*11*11) iterations & tests
    Z = []
    for i in range(11):
        for j in range(11):
            for k in range(11):
                for l in range(11):
                    if i+j+k+l == 10:
                        Z.append((i,j,k,l))
    return Z





This solution is the slowest solution because it requires 4 loops, and more
importantly, it tests all the different combinations (14641) of 4 integers
between 0 and 10 to retain only combinations whose sum is 10. We can of course
get rid of the 4 loops using itertools, but the code remains slow:

import itertools as it

def solution_2():
    # Itertools
    # 14641 (=11*11*11*11) iterations & tests
    return [(i,j,k,l)
            for i,j,k,l in it.product(range(11),repeat=4) if i+j+k+l == 10]





One of the best solution that has been proposed by Nick Popplas takes advantage
of the fact we can have intelligent imbricated loops that will allow us to
directly build each tuple without any test as shown below:

def solution_3():
    return [(a, b, c, (10 - a - b - c))
            for a in range(11)
            for b in range(11 - a)
            for c in range(11 - a - b)]





The best NumPy solution by Yaser Martinez uses a different strategy with a
restricted set of tests:

def solution_4():
    X123 = np.indices((11,11,11)).reshape(3,11*11*11)
    X4 = 10 - X123.sum(axis=0)
    return np.vstack((X123, X4)).T[X4 > -1]





If we benchmark these methods, we get:

>>> timeit("solution_1()", globals())
100 loops, best of 3: 1.9 msec per loop
>>> timeit("solution_2()", globals())
100 loops, best of 3: 1.67 msec per loop
>>> timeit("solution_3()", globals())
1000 loops, best of 3: 60.4 usec per loop
>>> timeit("solution_4()", globals())
1000 loops, best of 3: 54.4 usec per loop





The NumPy solution is the fastest but the pure Python solution is comparable.
But let me introduce a small modification to the Python solution:

def solution_3_bis():
    return ((a, b, c, (10 - a - b - c))
            for a in range(11)
            for b in range(11 - a)
            for c in range(11 - a - b))





If we benchmark it, we get:

>>> timeit("solution_3_bis()", globals())
10000 loops, best of 3: 0.643 usec per loop





You read that right, we have gained a factor of 100 just by replacing square
brackets with parenthesis. How is that possible? The explanation can be found
by looking at the type of the returned object:

>>> print(type(solution_3()))
<class 'list'>
>>> print(type(solution_3_bis()))
<class 'generator'>





The solution_3_bis() returns a generator that can be used to generate the
full list or to iterate over all the different elements. In any case, the huge
speedup comes from the non-instantiation of the full list and it is thus
important to wonder if you need an actual instance of your result or if a
simple generator might do the job.



NumPy & co

Beyond NumPy, there are several other Python packages that are worth a look
because they address similar yet different class of problems using different
technology (compilation, virtual machine, just in time compilation, GPU,
compression, etc.). Depending on your specific problem and your hardware, one
package may be better than the other. Let’s illustrate their usage using a very
simple example where we want to compute an expression based on two float
vectors:

import numpy as np
a = np.random.uniform(0, 1, 1000).astype(np.float32)
b = np.random.uniform(0, 1, 1000).astype(np.float32)
c = 2*a + 3*b






NumExpr

The numexpr [https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide]
package supplies routines for the fast evaluation of array expressions
element-wise by using a vector-based virtual machine. It’s comparable to SciPy’s
weave package, but doesn’t require a separate compile step of C or C++ code.

import numpy as np
import numexpr as ne

a = np.random.uniform(0, 1, 1000).astype(np.float32)
b = np.random.uniform(0, 1, 1000).astype(np.float32)
c = ne.evaluate("2*a + 3*b")







Cython

Cython [http://cython.org] is an optimising static compiler for both the
Python programming language and the extended Cython programming language (based
on Pyrex). It makes writing C extensions for Python as easy as Python itself.

import numpy as np

def evaluate(np.ndarray a, np.ndarray b):
    cdef int i
    cdef np.ndarray c = np.zeros_like(a)
    for i in range(a.size):
        c[i] = 2*a[i] + 3*b[i]
    return c

a = np.random.uniform(0, 1, 1000).astype(np.float32)
b = np.random.uniform(0, 1, 1000).astype(np.float32)
c = evaluate(a, b)







Numba

Numba [http://numba.pydata.org] gives you the power to speed up your
applications with high performance functions written directly in Python. With a
few annotations, array-oriented and math-heavy Python code can be just-in-time
compiled to native machine instructions, similar in performance to C, C++ and
Fortran, without having to switch languages or Python interpreters.

from numba import jit
import numpy as np

@jit
def evaluate(a, b):
    c = np.zeros_like(a)
    for i in range(a.size):
        c[i] = 2*a[i] + 3*b[i]
    return c

a = np.random.uniform(0, 1, 1000).astype(np.float32)
b = np.random.uniform(0, 1, 1000).astype(np.float32)
c = evaluate(a, b)







Theano

Theano [http://www.deeplearning.net/software/theano/] is a Python library
that allows you to define, optimize, and evaluate mathematical expressions
involving multi-dimensional arrays efficiently. Theano features tight
integration with NumPy, transparent use of a GPU, efficient symbolic
differentiation, speed and stability optimizations, dynamic C code generation
and extensive unit-testing and self-verification.

import numpy as np
import theano.tensor as T

x = T.fvector('x')
y = T.fvector('y')
z = 2*x + 3*y
f = function([x, y], z)

a = np.random.uniform(0, 1, 1000).astype(np.float32)
b = np.random.uniform(0, 1, 1000).astype(np.float32)
c = f(a, b)







PyCUDA

PyCUDA [http://mathema.tician.de/software/pycuda] lets you access Nvidia’s
CUDA parallel computation API from Python.

import numpy as np
import pycuda.autoinit
import pycuda.driver as drv
from pycuda.compiler import SourceModule

mod = SourceModule("""
    __global__ void evaluate(float *c, float *a, float *b)
    {
      const int i = threadIdx.x;
      c[i] = 2*a[i] + 3*b[i];
    }
""")

evaluate = mod.get_function("evaluate")

a = np.random.uniform(0, 1, 1000).astype(np.float32)
b = np.random.uniform(0, 1, 1000).astype(np.float32)
c = np.zeros_like(a)

evaluate(drv.Out(c), drv.In(a), drv.In(b), block=(400,1,1), grid=(1,1))







PyOpenCL

PyOpenCL [http://mathema.tician.de/software/pyopencl] lets you access GPUs
and other massively parallel compute devices from Python.

import numpy as np
import pyopencl as cl

a = np.random.uniform(0, 1, 1000).astype(np.float32)
b = np.random.uniform(0, 1, 1000).astype(np.float32)
c = np.empty_like(a)

ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

mf = cl.mem_flags
gpu_a = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a)
gpu_b = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b)

evaluate = cl.Program(ctx, """
    __kernel void evaluate(__global const float *gpu_a;
                           __global const float *gpu_b;
                           __global       float *gpu_c)
    {
        int gid = get_global_id(0);
        gpu_c[gid] = 2*gpu_a[gid] + 3*gpu_b[gid];
    }
""").build()

gpu_c = cl.Buffer(ctx, mf.WRITE_ONLY, a.nbytes)
evaluate.evaluate(queue, a.shape, None, gpu_a, gpu_b, gpu_c)
cl.enqueue_copy(queue, c, gpu_c)








Scipy & co

If there are several additional packages for NumPy, there are a trillion
additional packages for scipy. In fact, every domain of science probably has
its own package and most of the examples we’ve been studying until now could
have been solved in two or three calls to a method in the relevant package.
But of course, that was not the goal and programming things yourself is generally
a good exercise if you have some spare time. The biggest difficulty at this
point is to find these relevant packages. Here is a very short list of packages
that are well-maintained, well-tested and may simplify your scientific life
(depending on your domain). There are of course many more and depending on your
specific needs, chances are you do not have to program everything by
yourself. For an extensive list, have a look at the Awesome python list [https://awesome-python.com].


scikit-learn

scikit-learn [http://scikit-learn.org/stable/] is a free software machine
learning library for the Python programming language. It features various
classification, regression and clustering algorithms including support vector
machines, random forests, gradient boosting, k-means and DBSCAN, and is
designed to inter-operate with the Python numerical and scientific libraries
NumPy and SciPy.



scikit-image

scikit-image [http://scikit-image.org] is a Python package dedicated to
image processing, and using natively NumPy arrays as image objects. This
chapter describes how to use scikit-image on various image processing tasks,
and insists on the link with other scientific Python modules such as NumPy and
SciPy.



SymPy

SymPy [http://www.sympy.org/en/index.html] is a Python library for symbolic
mathematics. It aims to become a full-featured computer algebra system (CAS)
while keeping the code as simple as possible in order to be comprehensible and
easily extensible. SymPy is written entirely in Python.



Astropy

The Astropy [http://www.astropy.org] project is a community effort to
develop a single core package for astronomy in Python and foster
interoperability between Python astronomy packages.



Cartopy

Cartopy [http://scitools.org.uk/cartopy/] is a Python package designed to
make drawing maps for data analysis and visualization as easy as
possible. Cartopy makes use of the powerful PROJ.4, NumPy and shapely libraries
and has a simple and intuitive drawing interface to matplotlib for creating
publication quality maps.



Brian

Brian [http://www.briansimulator.org] is a free, open source simulator for
spiking neural networks. It is written in the Python programming language and
is available on almost all platforms. We believe that a simulator should not
only save the time of processors, but also the time of scientists. Brian is
therefore designed to be easy to learn and use, highly flexible and easily
extensible.



Glumpy

Glumpy [http://glumpy.github.io] is an OpenGL-based interactive
visualization library in Python. Its goal is to make it easy to create fast,
scalable, beautiful, interactive and dynamic visualizations.




Conclusion

NumPy is a very versatile library but still, it does not mean you have to use
it in every situation. In this chapter, we’ve seen some alternatives (including
Python itself) that are worth a look. As always, the choice belongs to you. You
have to consider what is the best solution for you in term of development time,
computation time and effort in maintenance. On the one hand, if you design your
own solution, you’ll have to test it and to maintain it, but in exchange,
you’ll be free to design it the way you want. On the other hand, if you decide
to rely on a third-party package, you’ll save time in development and benefit
from community-support even though you might have to adapt the package to your
specific needs. The choice is up to you.
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Conclusion

You’ve reached the end of this book. I hope you’ve learned something while
reading it, I sure learned a lot writing it. Trying to explain something is a
generally a good exercise to test for your knowledge of this thing. Of course,
we only scratched the surface of NumPy and there are many things left to
discover. Have a look at the bibliography for books written by true experts, at
the documentation written by people making NumPy and don’t hesitate to ask your
questions on the mailing lists because the NumPy community is very friendly.

If there’s a single message to retain from this book it is “premature
optimization is the root of all evil”. We’ve seen that code vectorization can
drastically improve your computation, with several orders of magnitude in some
cases. Still, problem vectorization is generally much more powerful. If you
write code vectorization too early in your design process, you won’t be able to
think out-of-the-box and you’ll certainly miss some really powerful alternatives
because you won’t be able to identify your problem properly as we’ve
seen in the problem vectorization chapter. This requires some experience and
you have to be patient: experience is not an overnight process.

Finally, custom vectorization is an option worth considering once you’ve looked
at the alternatives to NumPy. When nothing works for you, NumPy still offers
you a clever framework to forge your own tools. And who knows, this can be the
start of an exciting adventure for you and the community as it happened to me
with the glumpy [http://glumpy.github.io] and the vispy [http://vispy.org] packages.
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Data type









	Type

	Name

	Bytes

	Description





	bool

	b

	1

	Boolean (True or False) stored as a byte



	int

	l

	4-8

	Platform (long) integer (normally either int32 or int64)



	intp

	p

	4-8

	Integer used for indexing (normally either int32 or int64)



	int8

	i1

	1

	Byte (-128 to 127)



	int16

	i2

	2

	Integer (-32768 to 32767)



	int32

	i4

	4

	Integer (-2147483648 to 2147483647)



	int64

	i8

	8

	Integer (-9223372036854775808 to 9223372036854775807)



	uint8

	u1

	1

	Unsigned integer (0 to 255)



	uint16

	u2

	2

	Unsigned integer (0 to 65535)



	uint32

	u4

	4

	Unsigned integer (0 to 4294967295)



	uint64

	u8

	8

	Unsigned integer (0 to 18446744073709551615)



	float

	f8

	8

	Shorthand for float64



	float16

	f2

	2

	Half precision float:
sign bit, 5 bits exponent, 10 bits mantissa



	float32

	f

	4

	Single precision float:
sign bit, 8 bits exponent, 23 bits mantissa



	float64

	d

	8

	Double precision float:
sign bit, 11 bits exponent, 52 bits mantissa



	complex

	c16

	16

	Shorthand for complex128.



	complex64

	c8

	8

	Complex number, represented by two 32-bit floats



	complex128

	c16

	16

	Complex number, represented by two 64-bit floats






bool, int, float, and complex are understood, but named np.bool_ with
an additional underscore in NumPy. Additionally the names such as intc,
long, or double  used in the C programming language are defined.



Creation

Z = np.zeros(9)





┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘





Z = np.ones(9)





┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘





Z = np.array([1,0,0,0,0,0,0,1,0])





┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 1 │ 0 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘





Z = 2*np.ones(9)





┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │ 2 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘





Z = np.arange(9)





┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘





Z = np.arange(9).reshape(9,1)





┌───┐
│ 0 │
├───┤
│ 1 │
├───┤
│ 2 │
├───┤
│ 3 │
├───┤
│ 4 │
├───┤
│ 5 │
├───┤
│ 6 │
├───┤
│ 7 │
├───┤
│ 8 │
└───┘





Z = np.arange(9).reshape(3,3)





┌───┬───┬───┐
│ 0 │ 1 │ 2 │
├───┼───┼───┤
│ 3 │ 4 │ 5 │
├───┼───┼───┤
│ 6 │ 7 │ 8 │
└───┴───┴───┘





Z = np.random.randint(0,9,(3,3))





┌───┬───┬───┐
│ 4 │ 5 │ 7 │
├───┼───┼───┤
│ 0 │ 2 │ 6 │
├───┼───┼───┤
│ 8 │ 4 │ 0 │
└───┴───┴───┘





Z = np.linspace(0, 1, 5)





┌──────┬──────┬──────┬──────┬──────┐
│ 0.00 │ 0.25 │ 0.50 │ 0.75 │ 1.00 │
└──────┴──────┴──────┴──────┴──────┘





np.mgrid[0:3,0:3]





┌───┬───┬───┐   ┌───┬───┬───┐
│ 0 │ 0 │ 0 │   │ 0 │ 1 │ 2 │
├───┼───┼───┤   ├───┼───┼───┤
│ 1 │ 1 │ 1 │   │ 0 │ 1 │ 2 │
├───┼───┼───┤   ├───┼───┼───┤
│ 2 │ 2 │ 2 │   │ 0 │ 1 │ 2 │
└───┴───┴───┘   └───┴───┴───┘







Indexing

Z = np.arange(9).reshape(3,3)
Z[0,0]





┏━━━┓───┬───┐   ┏━━━┓
┃ 0 ┃ 1 │ 2 │ → ┃ 0 ┃ (scalar)
┗━━━┛───┼───┤   ┗━━━┛
│ 3 │ 4 │ 5 │
├───┼───┼───┤
│ 6 │ 7 │ 8 │
└───┴───┴───┘





Z = np.arange(9).reshape(3,3)
Z[-1,-1]





┌───┬───┬───┐
│ 0 │ 1 │ 2 │
├───┼───┼───┤
│ 3 │ 4 │ 5 │
├───┼───┏━━━┓   ┏━━━┓
│ 6 │ 7 ┃ 8 ┃ → ┃ 8 ┃ (scalar)
└───┴───┗━━━┛   ┗━━━┛





Z = np.arange(9).reshape(3,3)
Z[1]





┌───┬───┬───┐
│ 0 │ 1 │ 2 │
┏━━━┳━━━┳━━━┓   ┏━━━┳━━━┳━━━┓
┃ 3 ┃ 4 ┃ 5 ┃ → ┃ 3 ┃ 4 ┃ 5 ┃
┗━━━┻━━━┻━━━┛   ┗━━━┻━━━┻━━━┛
│ 6 │ 7 │ 8 │      (view)
└───┴───┴───┘





Z = np.arange(9).reshape(3,3)
Z[:,2]





┌───┬───┏━━━┓   ┏━━━┓
│ 0 │ 1 ┃ 2 ┃   ┃ 2 ┃
├───┼───┣━━━┫   ┣━━━┫
│ 3 │ 4 ┃ 5 ┃ → ┃ 5 ┃ (view)
├───┼───┣━━━┫   ┣━━━┫
│ 6 │ 7 ┃ 8 ┃   ┃ 8 ┃
└───┴───┗━━━┛   ┗━━━┛





Z = np.arange(9).reshape(3,3)
Z[1:,1:]





┌───┬───┬───┐
│ 0 │ 1 │ 2 │    (view)
├───┏━━━┳━━━┓   ┏━━━┳━━━┓
│ 3 ┃ 4 ┃ 5 ┃   ┃ 4 ┃ 5 ┃
├───┣━━━╋━━━┫ → ┣━━━╋━━━┫
│ 6 ┃ 7 ┃ 8 ┃   ┃ 7 ┃ 8 ┃
└───┗━━━┻━━━┛   ┗━━━┻━━━┛





Z = np.arange(9).reshape(3,3)
Z[::2,::2]





┏━━━┓───┏━━━┓   ┏━━━┳━━━┓
┃ 0 ┃ 1 ┃ 2 ┃   ┃ 0 ┃ 2 ┃
┗━━━┛───┗━━━┛ → ┣━━━╋━━━┫
│ 3 │ 4 │ 5 │   ┃ 6 ┃ 8 ┃
┏━━━┓───┏━━━┓   ┗━━━┻━━━┛
┃ 6 ┃ 7 ┃ 8 ┃    (view)
┗━━━┛───┗━━━┛





Z = np.arange(9).reshape(3,3)
Z[[0,1],[0,2]]





┏━━━┓───┬───┐
┃ 0 ┃ 1 │ 2 │
┗━━━┛───┏━━━┓   ┏━━━┳━━━┓
│ 3 │ 4 ┃ 5 ┃ → ┃ 0 ┃ 5 ┃
├───┼───┗━━━┛   ┗━━━┻━━━┛
│ 6 │ 7 │ 8 │    (copy)
└───┴───┴───┘







Reshaping

Z = np.array([0,0,0,0,0,0,0,0,0,0,1,0])





┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┏━━━┓───┐
│ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 ┃ 1 ┃ 0 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┗━━━┛───┘





Z = np.array([0,0,0,0,0,0,0,0,0,0,1,0]).reshape(12,1)





┌───┐
│ 0 │
├───┤
│ 0 │
├───┤
│ 0 │
├───┤
│ 0 │
├───┤
│ 0 │
├───┤
│ 0 │
├───┤
│ 0 │
├───┤
│ 0 │
├───┤
│ 0 │
├───┤
│ 0 │
┏━━━┓
┃ 1 ┃
┗━━━┛
│ 0 │
└───┘





Z = np.array([0,0,0,0,0,0,0,0,0,0,1,0]).reshape(3,4)





┌───┬───┬───┬───┐
│ 0 │ 0 │ 0 │ 0 │
├───┼───┼───┼───┤
│ 0 │ 0 │ 0 │ 0 │
├───┼───┏━━━┓───┤
│ 0 │ 0 ┃ 1 ┃ 0 │
└───┴───┗━━━┛───┘





Z = np.array([0,0,0,0,0,0,0,0,0,0,1,0]).reshape(4,3)





┌───┬───┬───┐
│ 0 │ 0 │ 0 │
├───┼───┼───┤
│ 0 │ 0 │ 0 │
├───┼───┼───┤
│ 0 │ 0 │ 0 │
├───┏━━━┓───┤
│ 0 ┃ 1 ┃ 0 │
└───┗━━━┛───┘





Z = np.array([0,0,0,0,0,0,0,0,0,0,1,0]).reshape(6,2)





┌───┬───┐
│ 0 │ 0 │
├───┼───┤
│ 0 │ 0 │
├───┼───┤
│ 0 │ 0 │
├───┼───┤
│ 0 │ 0 │
├───┼───┤
│ 0 │ 0 │
┏━━━┓───┤
┃ 1 ┃ 0 │
┗━━━┛───┘





Z = np.array([0,0,0,0,0,0,0,0,0,0,1,0]).reshape(2,6)





┌───┬───┬───┬───┬───┬───┐
│ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │
├───┼───┼───┼───┏━━━┓───┤
│ 0 │ 0 │ 0 │ 0 ┃ 1 ┃ 0 │
└───┴───┴───┴───┗━━━┛───┘







Broadcasting

Z1 = np.arange(9).reshape(3,3)
Z2 = 1
Z1 + Z2





┌───┬───┬───┐   ┌───┐   ┌───┬───┬───┐   ┏━━━┓───┬───┐   ┌───┬───┬───┐
│ 0 │ 1 │ 2 │ + │ 1 │ = │ 0 │ 1 │ 2 │ + ┃ 1 ┃ 1 │ 1 │ = │ 1 │ 2 │ 3 │
├───┼───┼───┤   └───┘   ├───┼───┼───┤   ┗━━━┛───┼───┤   ├───┼───┼───┤
│ 3 │ 4 │ 5 │           │ 3 │ 4 │ 5 │   │ 1 │ 1 │ 1 │   │ 4 │ 5 │ 6 │
├───┼───┼───┤           ├───┼───┼───┤   ├───┼───┼───┤   ├───┼───┼───┤
│ 6 │ 7 │ 8 │           │ 6 │ 7 │ 8 │   │ 1 │ 1 │ 1 │   │ 7 │ 8 │ 9 │
└───┴───┴───┘           └───┴───┴───┘   └───┴───┴───┘   └───┴───┴───┘





Z1 = np.arange(9).reshape(3,3)
Z2 = np.arange(3)[::-1].reshape(3,1)
Z1 + Z2





┌───┬───┬───┐   ┌───┐   ┌───┬───┬───┐   ┏━━━┓───┬───┐   ┌───┬───┬───┐
│ 0 │ 1 │ 2 │ + │ 2 │ = │ 0 │ 1 │ 2 │ + ┃ 2 ┃ 2 │ 2 │ = │ 2 │ 3 │ 4 │
├───┼───┼───┤   ├───┤   ├───┼───┼───┤   ┣━━━┫───┼───┤   ├───┼───┼───┤
│ 3 │ 4 │ 5 │   │ 1 │   │ 3 │ 4 │ 5 │   ┃ 1 ┃ 1 │ 1 │   │ 4 │ 5 │ 6 │
├───┼───┼───┤   ├───┤   ├───┼───┼───┤   ┣━━━┫───┼───┤   ├───┼───┼───┤
│ 6 │ 7 │ 8 │   │ 0 │   │ 6 │ 7 │ 8 │   ┃ 0 ┃ 0 │ 0 │   │ 6 │ 7 │ 8 │
└───┴───┴───┘   └───┘   └───┴───┴───┘   ┗━━━┛───┴───┘   └───┴───┴───┘





Z1 = np.arange(9).reshape(3,3)
Z2 = np.arange(3)[::-1]
Z1 + Z2





┌───┬───┬───┐   ┌───┬───┬───┐   ┌───┬───┬───┐   ┏━━━┳━━━┳━━━┓   ┌───┬───┬───┐
│ 0 │ 1 │ 2 │ + │ 2 │ 1 │ 0 │ = │ 0 │ 1 │ 2 │ + ┃ 2 ┃ 1 ┃ 0 ┃ = │ 2 │ 2 │ 2 │
├───┼───┼───┤   └───┴───┴───┘   ├───┼───┼───┤   ┗━━━┻━━━┻━━━┛   ├───┼───┼───┤
│ 3 │ 4 │ 5 │                   │ 3 │ 4 │ 5 │   │ 2 │ 1 │ 0 │   │ 5 │ 5 │ 5 │
├───┼───┼───┤                   ├───┼───┼───┤   ├───┼───┼───┤   ├───┼───┼───┤
│ 6 │ 7 │ 8 │                   │ 6 │ 7 │ 8 │   │ 2 │ 1 │ 0 │   │ 8 │ 8 │ 8 │
└───┴───┴───┘                   └───┴───┴───┘   └───┴───┴───┘   └───┴───┴───┘





Z1 = np.arange(3).reshape(3,1)
Z2 = np.arange(3).reshape(1,3)
Z1 + Z2





┌───┐   ┌───┬───┬───┐   ┏━━━┓───┬───┐   ┏━━━┳━━━┳━━━┓   ┌───┬───┬───┐
│ 0 │ + │ 0 │ 1 │ 2 │ = ┃ 0 ┃ 0 │ 0 │ + ┃ 0 ┃ 1 ┃ 2 ┃ = │ 0 │ 1 │ 2 │
├───┤   └───┴───┴───┘   ┣━━━┫───┼───┤   ┗━━━┻━━━┻━━━┛   ├───┼───┼───┤
│ 1 │                   ┃ 1 ┃ 1 │ 1 │   │ 0 │ 1 │ 2 │   │ 1 │ 2 │ 3 │
├───┤                   ┣━━━┫───┼───┤   ├───┼───┼───┤   ├───┼───┼───┤
│ 2 │                   ┃ 2 ┃ 2 │ 2 │   │ 0 │ 1 │ 2 │   │ 2 │ 3 │ 4 │
└───┘                   ┗━━━┛───┴───┘   └───┴───┴───┘   └───┴───┴───┘
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This is a curated list of some NumPy related resources (articles, books &
tutorials) addressing different aspects of NumPy. Some are very specific to
NumPy/Scipy while some others offer a broader view on numerical computing.


Contents


	Tutorials


	Articles


	Books







Tutorials


	100 Numpy exercises [http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html], Nicolas P. Rougier, 2016.


	Numpy tutorial [https://github.com/rougier/numpy-tutorial], Nicolas P. Rougier, 2015.


	Python course [http://www.python-course.eu/numpy.php], Bernd Klein, 2015.


	An introduction to Numpy and Scipy [https://engineering.ucsb.edu/~shell/che210d/numpy.pdf], M. Scott Shell, 2014.


	Python Numpy tutorial [http://cs231n.github.io/python-numpy-tutorial/], Justin Johnson, 2014.


	Quickstart tutorial [https://docs.scipy.org/doc/numpy/user/quickstart.html], Numpy developers, 2009.


	Numpy medkits [http://mentat.za.net/numpy/numpy_advanced_slides/], Stéfan van der Walt, 2008.






Articles


	
The NumPy array: a structure for efficient numerical computation [https://hal.inria.fr/inria-00564007/document]

Stéfan van der Walt, Chris Colbert & Gael Varoquaux,
Computing in Science and Engineering, 13(2), 2011.




In the Python world, NumPy arrays are the standard representation for
numerical data and enable efficient implementation of numerical
computations in a high-level language. As this effort shows, NumPy
performance can be improved through three techniques: vectorizing
calculations, avoiding copying data in memory, and minimizing operation
counts.





	
Vectorised algorithms for spiking neural network simulation [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.397.6097]

Romain Brette & Dan F. M. Goodman,
Neural Computation, 23(6), 2010.




High-level languages (Matlab, Python) are popular in neuroscience because
they are flexible and accelerate development. However, for simulating
spiking neural networks, the cost of interpretation is a bottleneck. We
describe a set of algorithms to simulate large spiking neural networks
efficiently with high-level languages using vector-based operations. These
algorithms constitute the core of Brian, a spiking neural network
simulator written in the Python language. Vectorized simulation makes it
possible to combine the flexibility of high-level languages with the
computational efficiency usually associated with compiled languages.





	
Python for Scientific Computing [http://dl.acm.org/citation.cfm?id=1251830]

Travis E. Oliphant,
Computing in Science & Engineering, 9(3), 2007.




By itself, Python is an excellent “steering” language for scientific codes
written in other languages. However, with additional basic tools, Python
transforms into a high-level language suited for scientific and
engineering code that’s often fast enough to be immediately useful but
also flexible enough to be sped up with additional extensions.









Books


	
SciPy Lecture Notes [http://www.scipy-lectures.org],

Gaël Varoquaux, Emmanuelle Gouillart, Olav Vahtras et al., 2016.




One document to learn numerics, science, and data with Python.  Tutorials
on the scientific Python ecosystem: a quick introduction to central tools
and techniques. The different chapters each correspond to a 1 to 2 hours
course with increasing level of expertise, from beginner to expert.





	
Python Data Science Handbook [http://shop.oreilly.com/product/0636920034919.do]

Jake van der Plas, O’Reilly, 2016.




The Python Data Science Handbook provides a reference to the breadth of
computational and statistical methods that are central to data—intensive
science, research, and discovery. People with a programming background who
want to use Python effectively for data science tasks will learn how to
face a variety of problems: for example, how can you read this data format
into your script? How can you manipulate, transform, and clean this data?
How can you use this data to gain insight, answer questions, or to build
statistical or machine learning models?





	
Elegant SciPy: The Art of Scientific Python [http://shop.oreilly.com/product/0636920038481.do]

Juan Nunez-Iglesias, Stéfan van der Walt, Harriet Dashnow, O’Reilly, 2016.




Welcome to Scientific Python and its community! With this practical book,
you’ll learn the fundamental parts of SciPy and related libraries, and get
a taste of beautiful, easy-to-read code that you can use in practice. More
and more scientists are programming, and the SciPy library is here to
help.  Finding useful functions and using them correctly, efficiently, and
in easily readable code are two very different things. You’ll learn by
example with some of the best code available, selected to cover a wide
range of SciPy and related libraries—including scikit-learn, scikit-image,
toolz, and pandas.





	
Learning IPython for Interactive Computing and Data Visualization [https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization-sec]

Cyrille Rossant, Packt Publishing, 2015.




This book is a beginner-friendly guide to the Python data analysis
platform. After an introduction to the Python language, IPython, and the
Jupyter Notebook, you will learn how to analyze and visualize data on
real-world examples, how to create graphical user interfaces for image
processing in the Notebook, and how to perform fast numerical computations
for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By
the end of this book, you will be able to perform in-depth analyses of all
sorts of data.





	
SciPy and NumPy [https://www.safaribooksonline.com/library/view/scipy-and-numpy/9781449361600/]

Eli Bressert, O’Reilly Media, Inc., 2012




Are you new to SciPy and NumPy? Do you want to learn it quickly and easily
through examples and concise introduction? Then this is the book for
you. You’ll cut through the complexity of online documentation and
discover how easily you can get up to speed with these Python libraries.





	
Python for Data Analysis [http://shop.oreilly.com/product/0636920023784.do]

Wes McKinney, O’Reilly Media, Inc., 2012.




Looking for complete instructions on manipulating, processing, cleaning,
and crunching structured data in Python? This hands-on book is packed
with practical cases studies that show you how to effectively solve a
broad set of data analysis problems, using several Python libraries.*





	
Guide to NumPy [http://csc.ucdavis.edu/~chaos/courses/nlp/Software/NumPyBook.pdf]

Travis Oliphant, 2006




This book only briefly outlines some of the infrastructure that surrounds
the basic objects in NumPy to provide the additional functionality
contained in the older Numeric package (i.e. LinearAlgebra, RandomArray,
FFT). This infrastructure in NumPy includes basic linear algebra routines,
Fourier transform capabilities, and random number generators. In addition,
the f2py module is described in its own documentation, and so is only
briefly mentioned in the second part of the book.
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SEAN’s Paradise

I think that My Life as Software Engineer was torrible , but it’s role for social is important
so, I keep going for better life & software development
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chapter 1: Talking to Your Computer

이장에서는 다음을 공부하게 됩니다.

▶ Talking to your computer
▶ Creating programs to talk to your computer
▶ Understanding what a program does and why you want to create it
▶ Considering why you want to use Python as your programming language






1.1 Understanding Why You Want to Talk to Your Computer

Next time I will upate contents



1.2 Defining What an Application Is

Next time I will upate contents



1.3 Understanding Why Python is So Cool

Next time I will upate contents


Discovering which organizationsuse Python

✓ Alice Educational Software – Carnegie Mellon University (http://www.cmu.edu/corporate/news/2007/features/alice.shtml):Educational applications
✓ Fermilab (https://www.fnal.gov/): Scientific applications
✓ Go.com (http://go.com/): Browser-based applications
✓ Google (https://www.google.com/): Search engine
✓ Industrial Light & Magic (http://www.ilm.com/): Just about everyprogramming need
✓ Lawrence Livermore National Library (https://www.llnl.gov/):Scientific applications
✓ National Space and Aeronautics Administration (NASA) (http://www.nasa.gov/): Scientific applications
✓ New York Stock Exchange (https://nyse.nyx.com/): Browser-based applications
✓ ObjectDomain (http://case-tools.org/tools/objectdomain.html): Computer Aided Software Engineering (CASE) tools
✓ Redhat (http://www.redhat.com/): Linux installation tools
✓ Yahoo! (https://www.yahoo.com/): Parts of Yahoo! mail
✓ YouTube (http://www.youtube.com/): Graphics engine
✓ Zope – Digital Creations (http://www.zope.com/): Publishing application







Python Application

다양한 Python Application은 다음에서 찾을 수 있다.

https://wiki.python.org/moin/Applications



Comparing Python to other languages

언어에 대한 비교 자료는 다음에서 볼 수 있다.

https://wiki.python.org/moin/LanguageComparisons



c# & Python

Python은 C# 과 더불어 다음과 같은 장점이 있다.

✓ Significantly easier to learn
✓ Smaller (more concise) code
✓ Supported fully as open source
✓ Better multiplatform support
✓ Easily allows use of multiple development environments
✓ Easier to extend using Java and C/C++
✓ Enhanced scientific and engineering support







Java

자바는 다음과 같은 장점이 있다.

✓ Significantly easier to learn
✓ Smaller (more concise) code
✓ Enhanced variables (storage boxes in computer memory) that can hold
different kinds of data based on the application’s needs while running
(dynamic typing)
✓ Faster development times







Perl

Perl은 다음과 같은 장점이 있다.

✓ Simpler to learn
✓ Easier to read
✓ Enhanced protection for data
✓ Better Java integration
✓ Fewer platform-specific biases





각각의 언어별로 장단점은 있지만 많이 쓰이는 언어를 기본으로 배우는것이 유리하다.




Algorithms Train


01.hello_world.py



02.basic_variable.py



03.advance_variable.py



04.concate_output.py



05.calculate_average.py



06.exchange_variables.py



07_first_reverse.py



08-FirstReverse.py



09_first_factorial.py



10.arrayElementsProduct.py



11.arraySumAdjacentDifference.py



12.compareIntegers2.py



13.find_cumulative_sum.py



14.generate_random_number.py



15.swap.py



16.remove_duplicate.py
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chapter 10: Interacting with Modules


10.1 Creating Code Groupings



10.2 Importing Modules



10.3 Finding Modules on Disk



10.4 Viewing the Module Content



10.5 Using the Python Module Documentation



Algorithms Train


01-01.MyLibrary.py



02.basic_string.py



03.indexing_slicing.py



04.input_from_user.py



05.print_formating_with_string.py



06.properties_and_method_of_string.py



07.replace_all_occurrence.py



08.string_array_revisal.py



09.sum_consecutives.py



10.the_office_v_find_a_chair.py



11.the_shell_game.py



12.triple_trouble_1.py



13.twisted_sum.py



reverseParentheses.py



rotateImage.py



shapeArea.py



sortByHeight.py



solver.py



sudoku2.py



tellTime.py
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chapter 11: Working with Strings


11.1 Understanding That Strings Are Different



11.2 Creating Stings with Special Characters



11.3 Selecting Individual Characters



11.4 Slicing and Dicing Strings



11.5 Locating a Value in a String



11.6 Formatting Strings



Algorithms Train


01-01.BasicString.py



01-02.Characters.py



01-03.Formatted.py



01-04.Functions.py



01-05.SearchString.py



01-06.SpecialCharacters.py



02.remove_nth_Index.py



03.detect_anagram.py



04.form_new_string.py



05.count_number.py



06.take_in_string.py



07.calculate_string.py



08.unary_function_chainer.py



09.unique_in_order.py



10.valid_phone_number.py



11.validate_credit_card_number.py



12.vowel_consonant_lexicon.py



13.what_century_is_it.py



14.which_are_in.py



15.your_order_please.py






            

          

      

      

    

  

  
    
    

    chapter 12: Managing Lists
    

    
 
  

    
      
          
            
  
chapter 12: Managing Lists


12.1 Organizing Information in an Application



12.2 Creating Lists



12.3 Accessing Lists



12.4 Looping Through Lists



12.5 Modifying Lists



12.6 Searching Lists



12.7 Sorting Lists



12.8 Working with the Counter Object
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01-01.ListLoop.py



01-02.SearchList.py



01-03.SortList.py



01-04.UseCounterWithList.py



02.remove_charater.py



03.calcuate_number.py



04.take_in_two_string.py



05.count_number.py



06.check_palindrome_string.py



07.calculate_the_number.py
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chapter 13: Collecting All Sorts of Data


13.1 Understanding Collections



13.2 Working with Tuples



13.3 Working with Dictionaries



13.4 Creating Stacks Using Lists



13.5 Working with queues



13.6 Working with deques
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01-01.DequeData.py



02.check_palindrome_string2.py



03.accept_hyphen_separated.py



04.calculate_the_number.py



05.form_New_String.py



06.count_the_occurrences.py



07.check_substring.py



08.ListStack.py



09.PythonSwitch.py



10.QueueData.py
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chapter 14: Creating and Using Classes


14.1 Understanding the Class as a Packaging Method

.



14.2 Considering the Parts of a Class



14.3 Creating a Class



14.4 Using the Class in an Application



14.5 Extending Classes to Make New Classes



Algorithms Train


01-01.Animals.py



01-02.Animal2.py



01-03.AnimalsTest.py



01-04.AnimalsTest2.py



01-05.MyClass.py



01-06.MyClass2.py



01-07.MyClassTest.py



01-08.MyClassTest2.py



01-09.OverloadOperator.py



01-10.VariableArgs.py



01.List.py



02.find_largest_number.py



03.find_second_largest_number.py



04.put_even_odd.py



05.merge_two_list.py



06.sort_list.py
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chapter 15: Storing Data in Files


15.1 Understanding How Permanent Storage Works

.



15.2 Creating Content for Permanent Storage



15.3 Creating a File



15.4 Reading File Content



15.5 Updating File Content



15.6 Deleting a File



Algorithms Train


01-01.CreateCSV.py



01-02.CreateCSV2.py



01-03.DeleteCSV.py



01-04.FormattedData.py



01-05.FormattedData2.py



01-06.FormattedDataTest.py



01-07.FormattedDataTest2.py



01-08.ReadCSV.py



01-09.UpdateCSV.py



01-10.UpdateCSV2.py



02.find_second_number.py



03..sort_list2.py



04.find_union.py



05.find_intersection.py



06.create_list.py



07.find_all_numbers.py
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chapter 16: Sending an E-Mail


16.1 Understanding What Happens When You Send E-Mail



16.2 Creating the E-mail Message
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01-01.HTMLMessage.py



01-02.TextMessage.py



02.find_cumulative_sum.py



03.generate_random_number.py



04.sort_list_tuple.py



05.swap.py



06.remove_duplicate.py



07.read_list.py



08.remove_ith_occurrence.py



09.remove_all_tuples.py
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chapter 2: Getting Your Own Copy of Python

이 장에서는 다음 내용을 배우게 됩니다.

▶ Obtaining a copy of Python for your system
▶ Performing the Python installation
▶ Finding and using Python on your system
▶ Ensuring your installation works as planned






2.1 Downloading the Version You Need

파이썬은 다음과 같은 OS 플랫폼을 지원합니다.

✓ Advanced IBM Unix (AIX)
✓ Amiga Research OS (AROS)
✓ Application System 400 (AS/400)
✓ BeOS
✓ Hewlett-Packard Unix (HP-UX)
✓ Linux
✓ Mac OS X (comes pre-installed with the OS)
✓ Microsoft Disk Operating System (MS-DOS)
✓ MorphOS
✓ Operating System 2 (OS/2)
✓ Operating System 390 (OS/390) and z/OS
✓ PalmOS
✓ Playstation
✓ Psion
✓ QNX
✓ RISC OS (originally Acorn)
✓ Series 60
✓ Solaris
✓ Virtual Memory System (VMS)
✓ Windows 32-bit (XP and later)
✓ Windows 64-bit
✓ Windows CE/Pocket PC





주로 많이 교육용으로 쓰이는 OS는 Windows 10 내지 Linux가 될것이다.
다음 사이트에 가서 해당 OS에 맞는 Python 프로그램을 받아야 한다.

http://www.python.org/download/releases

windows 인스톨 버젼은 Default로 인스톨해도 되지만 특정 Directory에 인스톨 하고 해당 디텍토리를
윈도우 설정에서 추가하는것이 좋다.



2.2 Installing Python

인스톨 과정은 생략한다.



2.3 Accessing Python on Your Machine

윈도우에서 Python을 실행하려면 Python IDLE를 실행하면 된다.
또는 윈도우에서 실행화일 패스를 잡고 윈도우 터미널에서 >Python 이라고 실행해도 된다.



2.4 Testing Your Installation

인스톨이 잘 되었는지 확인해 보자.
터미널에서 다음을 실행해 보자.

print("This is my first Python program.”)





Python IDLE에서 표시되는 색깔은 다음을 표현한다.

✓ Purple: Indicates that you have typed a command
✓ Green: Specifies the content sent to a command
✓ Blue: Shows the output from a command
✓ Black: Defines non-command entries





터미널에서 다음을 실행해 보자.

3+4





Next time I will upate contents
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01_palindrome_chain_length.py



02-LetterChanges.py



02_enum.py



02_lett_changes.py



03-LongestWord.py



03_longest_word.py



05-SimpleAdding.py



05_simple_adding.py



06-LetterCapitalize.py



06_letter_capitalize.py



07-SimpleSymbols.py



07.number_n_nm.py



07_SimpleSymbols2.py



07_simple_symbols.py



08-CheckNums.py



08.reverse_number.py



08.reverse_number2.py



08.reverse_number3.py



08_check_numbers.py



09-TimeConvert.py



09.positvenegative.py



09_time_convert.py



10.takemark.py



11.print_number.py



12.print_q_r.py






            

          

      

      

    

  

  
    
    

    chapter 3: Interacting with Python
    

    
 
  

    
      
          
            
  
chapter 3: Interacting with Python

이 장에서는 다음을 배우게 될것이다.

▶ Accessing the command line
▶ Using commands to perform tasks
▶ Obtaining help about Python
▶ Ending a command-line session





모든 프로그램에서 다음의 개념은 필수이다.
CRUD
.. sourcecode:: pycon


✓ Create
✓ Read
✓ Update
✓ Delete





3.1 Opening the Command Line

터미널에서 실행해 보자.



3.2 Typing a Command

터미널에서 실행해 보자.



3.3 Using Help

도움말을 실행해 보자

help()





help 화면으로 들어가면 다양한 명령어에 설명을 볼 수 있다.
아무것도 입력 안하고 Enter를 누르면 help 화면을 빠져 나올 수 있다.

topics,FUNCTIONS 도 실행해 보자.

직접 help를 호출 할 수도 있다.
.. code-block:: python


help(‘topics’) or help(“topcis”)






3.4 Closing the Command Line

Next time I will upate contents



Algorithms Train


01_alphabet_soup.py



02-AlphabetSoup.py



03-ABCheck.py



03_ab_check.py



04-VowelCount.py



04_vowel_count.py



05-WordCount.py



05.accept_3_digit.py



05_word_count.py



06-ExOh.py



06.print_odd_number.py



06_palindrome.py



06_XO_Problem.py



07-Palindrome.py



07.print_sum_digit.py



08-ArithGeo.py



08.findsmallestdivisor.py



09.count_the_number.py



10.check_palindrome.py
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chapter 4: Writing Your First Application

이 장에서는 다음을 배우게 된다.

▶ Working with the Integrated DeveLopment Environment (IDLE)
▶ Getting started with IDLE
▶ Writing the first application
▶ Seeing how the first application works
▶ Formatting your application code
▶ Using comments effectively
▶ Working with existing applications
▶ Ending your IDLE session






4.1 Understanding the Integrated DeveLopment Environment

IDLE은 다음과 같은 기능을 가지고 있다.

✓ Write Python code.
✓ Recognize and highlight keywords and certain types of special text.
✓ Perform both simple editing (such as cut, copy, and paste) and codespecific
editing (such as showing the parentheses that surround an
expression).
✓ Save and open Python files.
✓ Browse the Python path to make locating files easy.
✓ Browse and locate Python classes.
✓ Perform simple debugging tasks (removing errors from the code).







4.2 Starting IDLE

실습을 해보자.

Next time I will upate contents.



4.3 Creating the Application

실습을 해보자.

Next time I will upate contents



4.4 Running the Application

실습을 해보자.

FirstApp.py 를 만들어 보자.

print("This is a simple Python application.")







4.5 Understanding the Use of Indentation

실습을 해보자.

Next time I will upate contents.



4.6 Adding Comments

실습을 해보자.

Next time I will upate contents.



4.7 Loading and Running Existing Applications

실습을 해보자.

Next time I will upate contents.



4.8 Closing IDLE

실습을 해보자.

Next time I will upate contents.
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01.print_all_integer.py



02.read_the_number_n.py



03.read_the_number2.py



04.print_identity_matrix.py



05.inverted_star_pattern.py



06.read_primes.py



07.are_they_the_same.py



08.array_dot_diff.py



09.buying_a_car.py



10.calculate_string_rotation.py



11.character_frequency_1.py



12.checking_groups.py



13.python_switch.py



FirstApp.py



LongLine.py
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chapter 5: Storing and Modifying Information

이 장에서는 다음을 배우게 될것이다.

▶ Understanding data storage
▶ Considering the kinds of data storage
▶ Adding dates and times to applications






5.1 Storing Information

데이터를 저장하는 방법들은 많다.
파이썬도 여러가지 데이터 타입이 있는데 앞으로 데이터 타입을 공부하게 될것이다.

.



5.2 Defining the Essential Python Data Types

모든 프로그램에서는 변수(variables)들을 사용한다.
변수의 종류를 데이터 타입이라고 한다.
많은 연습을 통해 변수의 정확한 개념을 이해하는것이 중요하다.
단지 어떤 양을 저장하기 위한 그릇이라고 생각하면 된다.
그런데 그 그릇이 다양한 형태로 존재 하는것이다.
양에 따라서 저장하는 여러가지 그릇이 존재한다고 생각하면 쉽다.

다음을 실행해 보자.

Myvar=5





위에서 =는 할당 연산자로 한다. Myvar에 5를 넣으라는 것이다.


Understanding the Numeric types

숫자만을 넣는 데이터 타입들이 있다.



Integer

integer 데이터 타입은 –9,223,372,036,854,775,808 ~ 9,223,372,036,854,775,807 숫자를 넣을 수 있다.

int 타입은 2(binary),8(octet),16(hex) 형태로 표현을 할 수 있다.

✓ Base 2: Uses only 0 and 1 as numbers.
✓ Base 8: Uses the numbers 0 through 7.
✓ Base 10: Uses the usual numeric system.
✓ Base 16: Is also called hex and uses the numbers 0 through 9 and the letters
A through F to create 16 different possible values.





그리고 출력 표현도 다음과 같이 할 수 있다.

✓ b: Base 2
✓ o: Base 8
✓ x: Base 16





예를 들면 integer 4 는 0b100 (2 binary)

다음을 출력해 보자.

test=0b100
print(test)
test2=0o100
print(test2)
test3=0x100
print(test3)







Floating-point values

정수를 포함한 소스까지 확대된 숫자의 데이터 타입이다.

±1.7976931348623157 × 10308 ~  ±2.2250738585072014 × 10-308

다음을 출력해 보자.

test=255
print(test)
test2=2.55e2
print(test2)
test3=2.55e-2
print(test3)







Complex numbers

복소수이다.

복소수가 쓰이는 분야는 다양하다.

✓ Electrical engineering
✓ Fluid dynamics
✓ Quantum mechanics
✓ Computer graphics
✓ Dynamic systems





다음을 출력해 보자.

myComplex=3 + 4j
print(myComplex.real)
print(myComplex.imag)







Understanding Boolean values

True or False 값을 리턴하거나 할당하는데 쓰인다.



Understanding strings

사람이 인식하는 문자를 담는 변수를 string이라고 한다.

myString =”Python is a great language.”

string을 int,float 타입으로 변환하려면 int(),float() 함수를 쓰면 된다.

myInt=int(“123”)

myInt 값은 Integer 변수이다.

다음을 출력해 보자.

myInt=int("123")
print(myInt)
print(type(myInt))





myStr=str(123.56)
print(myStr)
print(type(myStr))








5.3 Working with Dates and Times

시간 모듈을 import하여  시간을 출력하는 예제를 실행해 보자.

import datetime
print(datetime.datetime.now())
print(str(datetime.datetime.now().date()))
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01.Codeforces_L01P01_1118A.py



02.Codeforces_L01P02_677A.py



03.Codeforces_L01P05_673A.py



04.complete_the_pattern_number_8_number_pyramid.py



05.complete_the_pattern_number_9_diamond.py



06.count_the_smiley_faces.py



07.detect_pangram.py



08.duplicate_encoder.py
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chapter 6: Managing Information

이 장에서는 다음을 배우게 된다.

▶ Understanding the Python view of data
▶ Using operators to assign, modify, and compare data
▶ Organizing code using functions
▶ Interacting with the user






6.1 Controlling How Python Views Data



6.2 Working with Operators

Operators are the basis for both control and management of data within applications

연산자의 종류는 다음과 같다.

✓ Unary
✓ Arithmetic
✓ Relational
✓ Logical
✓ Bitwise
✓ Assignment
✓ Membership
✓ Identity






Unary

[image: _images/chapter6-1.png]


Arithmetic

[image: _images/chapter6-2.png]


Relational

[image: _images/chapter6-3.png]
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Logical

[image: _images/chapter6-4.png]


Bitwise
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Assignment
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Membership
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Identity
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Understanding operator precedence
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6.3 Creating and Using Functions


Defining a Function

함수를 정의해 보자.

def Hello():
    print("This is my first Python function!")

Hello()







Accessing functions

함수 호출은 정의한 함수 그대로 호출하면 된다.



Sending information to functions

다음을 출력해 보자.
함수라는것은 반복적인 구문이나 어떤 상황을 전달했을때 다양하게 출력할 수 있는 것을 만드는 것이다.

def Hello2( Greeting ):
   print(Greeting)

Hello2("This is the second function.")
Hello2("It takes an argument.")





아래 예제는 값이 지정되어 전달되거나 임의로 전달되었을때 합을 출력하는 함수이다.

def AddIt(Value1, Value2):
    print(Value1, " + ", Value2, " = ", (Value1 + Value2))

AddIt(2, 3)
AddIt(Value2 = 3, Value1 = 2)





아래 예제는 기본값이 주어지지 않았을경우 출력하는 예제이다.

def Hello3(Greeting = "No Value Supplied"):
    print(Greeting)

Hello3()
Hello3("This is a string.")
Hello3(5)
Hello3(2 + 7)







Returning information from functions

함수로부터의 리턴값은 다양하게 나타낼수 있다 .

✓ Values: Any value is acceptable. You can return numbers, such as 1 or 2.5;
strings, such as “Hello There!”; or Boolean values, such as True or False.
✓ Variables: The content of any variable works just as well as a direct
value. The caller receives whatever data is stored in the variable.
✓ Expressions: Many developers use expressions as a shortcut. For example,
you can simply return A + B rather than perform the calculation,
place the result in a variable, and then return the variable to the caller.
Using the expression is faster and accomplishes the same task.
✓ Results from other functions: You can actually return data from another
function as part of the return of your function.





함수의 리턴값을 비교하는 예제를 실행해 보자.

def DoAdd(Value1, Value2):
   return Value1 + Value2

print("The sum of 3 + 4 is ", DoAdd(3, 4))
print("3 + 4 equals 2 + 5 is ", (DoAdd(3, 4) == DoAdd(2, 5)))








6.4 Getting User Input

사용자가 입력을 할 수 있는 것을 제공하는 기능이다.
사용자가 입력한값을 가지고 처리하게 되는것이다.

다음 예제를 출력해 보자.

Name = input("Tell me your name: ")
print("Hello ", Name)





ANumber = float(input("Type a number: "))
print("You typed: ", ANumber)







Algorithms Train


01-01.Arguments01.py



01-02.Arguments02.py



01-03.Arguments03.py



01-04.FirstFunction.py



01-05.Input01.py



01-06.Input02.py



01-07.ReturnValue.py



01-08.VarArgs.py



01.myfunction.py



02.basic_string.py



03.indexing_slicing.py



04.input_from_user.py



05.print_formating_with_string.py



06.properties_and_method_of_string.py



07.argsANDkargs.py



08.replace_all_occurrence.py



09.evil_autocorrect_prank.py



10.find_added.py



11.find_the_missing_letter.py



12.find_the_parity_outlier.py



13.fizz_slash_buzz.py



14.format_a_string_of_names_like_bart_lisa_and_maggie.py



15.nestedstatementAndScope.py



16.pig_latin.py



firstDuplicate.py



firstNotRepeatingCharacter.py



solver.py



solver.py
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chapter 7: Making Decisions

이 장에서는 다음을 배우게 된다.

▶ Using the if statement to make simple decisions
▶ Performing more advanced decision making with the if...else statement
▶ Creating multiple decision levels by nesting statements





인간은 자연적으로 판단을 하게 되지만 컴퓨터는 매번 판단을 하기 위하여 다음의 임무를 수행한다.

1. Obtain the actual or current value of something.
2. Compare the actual or current value to a desired value.
3. Perform an action that corresponds to the desired outcome of the
comparison.






7.1 Making Simple Decisions Using the if Statement

다음을 출력해 보자.

TestMe = 6
if TestMe == 6:
   print("TestMe does equal 6!")





TestMe = 6
if TestMe == 6:
   print("TestMe does equal 6!")
   print("All done!")





다음 코드는 입력된 값에 따라 해당 값을 프린트 하는 조건문이다.

Value = int(input("Type a number between 1 and 10: "))

if (Value > 0) and (Value <= 10):
   print("You typed: ", Value)







7.2 Choosing Alternatives Using the if…else Statement

선택의 상황이나 2가지 이상의 조건이 붙었을경우 처리하는 구문이다.
기본적 형태는 다음과 같다.

if  조건    :
    print("xxxx")
else
    print("yyy")





다음 예제를 출력해 보자.

Value = int(input("Type a number between 1 and 10: "))

if (Value > 0) and (Value <= 10):
   print("You typed: ", Value)
else:
   print("The value you typed is incorrect!")





다음은 여려 조건이 있을경우 elif을 쓰는 법을 나타낸다.

print("1. Red")
print("2. Orange")
print("3. Yellow")
print("4. Green")
print("5. Blue")
print("6. Purple")

Choice = int(input("Select your favorite color: "))

if (Choice == 1):
   print("You chose Red!")
elif (Choice == 2):
   print("You chose Orange!")
elif (Choice == 3):
   print("You chose Yellow!")
elif (Choice == 4):
   print("You chose Green!")
elif (Choice == 5):
   print("You chose Blue!")
elif (Choice == 6):
   print("You chose Purple!")
else:
   print("You made an invalid choice!")







7.3 Using Nested Decision Statements

조건이 2개 이상 발생할때 먼저 조건이 해결된후 다음 조건이 생겼을때 표현이다.
이럴경우는 if문 안에 다시 if문을 넣어 처리하게 된다.

다음 예제를 출력해 보자.

One = int(input("Type a number between 1 and 10: "))
Two = int(input("Type a number between 1 and 10: "))

if (One >= 1) and (One <= 10):
   if (Two >= 1) and (Two <= 10):
      print("Your secret number is: ", One * Two)
   else:
      print("Incorrect second value!")
else:
   print("Incorrect first value!")





다음은 복합적인 if,elif 조건문 예제이다.

print("1. Eggs")
print("2. Pancakes")
print("3. Waffles")
print("4. Oatmeal")
MainChoice = int(input("Choose a breakfast item: "))

if (MainChoice == 2):
   Meal = "Pancakes"
elif (MainChoice == 3):
   Meal = "Waffles"

if (MainChoice == 1):
   print("1. Wheat Toast")
   print("2. Sour Dough")
   print("3. Rye Toast")
   print("4. Pancakes")
   Bread = int(input("Choose a type of bread: "))

   if (Bread == 1):
      print("You chose eggs with wheat toast.")
   elif (Bread == 2):
      print("You chose eggs with sour dough.")
   elif (Bread == 3):
      print("You chose eggs with rye toast.")
   elif (Bread == 4):
      print("You chose eggs with pancakes.")
   else:
      print("We have eggs, but not that kind of bread.")

elif (MainChoice == 2) or (MainChoice == 3):
   print("1. Syrup")
   print("2. Strawberries")
   print("3. Powdered Sugar")
   Topping = int(input("Choose a topping: "))

   if (Topping == 1):
      print ("You chose " + Meal + " with syrup.")
   elif (Topping == 2):
      print ("You chose " + Meal + " with strawberries.")
   elif (Topping == 3):
      print ("You chose " + Meal + " with powdered sugar.")
   else:
      print ("We have " + Meal + ", but not that topping.")

elif (MainChoice == 4):
   print("You chose oatmeal.")

else:
   print("We don't serve that breakfast item!")
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chapter 8: Performing Repetitive Tasks

이 장에서는 다음을 배우게 된다.

▶ Performing a task a specific number of times
▶ Performing a task until completion
▶ Placing one task loop within another






8.1 Processing Data Using the for Statement



8.2 Processing Data Using the while Statement



8.3 Nesting Loop Statements
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Table 6-3 Python Relational Operators

Operator  Description Example
== Determines whether two values are equal. Notice that 1==2is
the relational operator uses two equals signs. A mistake False

many developers make is using just one equals sign,
which results in one value being assigned to another.

1= Determines whether two values are not equal. Some 11=2is
older versions of Python allowed you to use the <> oper- True
ator in place of the != operator. Using the <> operator
results in an error in current versions of Python.

> Verifies that the left operand value is greater than the 1>2is
right operand value. False
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Operator  Description Example

< Verifies that the left operand value is less than the right 1<2is
operand value. True

>= Verifies that the left operand value is greater than or 1>=2is
equal to the right operand value. False

<= Verifies that the left operand value is less than or equal 1<=2is
to the right operand value. True
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Table 6-1 Python Unary Operators

Operator Description Example

~ Inverts the bits in a number so that ~4 results in a value of -5
all the 0 bits become 1 bits and vice
versa.

- Negates the original value so that —(—4) results in 4 and —4
positive hecomes negative and vice results in —4
versa.

+ Is provided purely for the sake of +4 results in a value of 4

completeness. This operator returns
the same value that you provide as
input.
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Table 6-2 Python Arithmetic Operators

Operator  Description Example
+ Adds two values together 5+2=7
- Subtracts the right operand from the left operand 5-2=3
* Multiplies the right operand by the left operand 5*2=10
/ Divides the left operand by the right operand 5/2=25
% Divides the left operand by the right operand and 5%2=1

returns the remainder

*x Calculates the exponential value of the right operand 5*¥2=25
by the left operand

// Performs integer division, in which the left operand 5//2=2
is divided by the right operand and only the whole
number is returned (also called floor division)
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Table 6-5 Python Bitwise Operators
Operator Description Example
& (And) Determines whether both individual bits 0b1100 & 0b0110
within two operators are true and sets =0b0100
the resulting bit to true when they are.
| (or) Determines whether either of the indi- 0b1100|0b0110 =
vidual bits within two operators is true 0b1110
and sets the resulting bit to true when
one of them is.
* (Exclusive Determines whether just one of the indi- ~ 0b1100 A 0b0110 =
or) vidual bits within two operators is true 0b1010
and sets the resulting bit to true when
one is. When both bits are true or both
bits are false, the resultis false.
~ (One’s Calculates the one’s complement value ~0b1100 =
complement) of a number. —0b1101
~0b0110 =

—-0b0111
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<< (Left
shift)

Shifts the bits in the left operand left by
the value of the right operand. All new
bits are set to 0 and all bits that flow off
the end are lost.

0b00110011 << 2=
0b11001100

>> (Right
shift)

Shifts the bits in the left operand right by
the value of the right operand. All new
bits are set to 0 and all bits that flow off
the end are lost.

0b00110011 >>2 =
0b00001100
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Table 6-4

Python Logical Operators

Operator Description Example
and Determines whether both operands True and True is True
are true. True and False is False
False and True is False
False and False is False
or Determines when one of two operands True or True is True
Istrue. True or False is True
False or True is True
False or False is False
not Negates the truth value of a single not True is False

operand. A true value becomes false
and a false value becomes true.

not False is True
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Table 6-7 Python Membership Operators

Operator Description Example
In Determines whether the value “Hello” in “Hello Goodbye”
in the left operand appears in is True
the sequence found in the right
operand.
not in Determines whether the value in “Hello” not in “Hello
the left operand is missing from Goodbye” is False

the sequence found in the right
operand.
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Table 6-8 Python Identity Operators

Operator Description Example

Is Evaluates to true when the type of the value or type(2) is int
expression in the right operand points to the is True
same type in the left operand.

is not Evaluates to true when the type of the value or type(2) is not
expression in the right operand points to a differ- intis False

ent type than the value or expression in the left
operand.
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